Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 20, pp 8903–8912 | Cite as

Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid

  • Stephen H. Brown
  • Lena Bashkirova
  • Randy Berka
  • Tyler Chandler
  • Tammy Doty
  • Keith McCall
  • Michael McCulloch
  • Sarah McFarland
  • Sheryl Thompson
  • Debbie Yaver
  • Alan Berry
Biotechnological products and process engineering

Abstract

Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.

Keywords

Malic acid Metabolic engineering Filamentous fungi Transcriptomics Aspergillus oryzae 

References

  1. Abe K, Gomi K, Hasegawa F, Machida M (2006) Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143–153PubMedCrossRefGoogle Scholar
  2. Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387PubMedCrossRefGoogle Scholar
  3. Aleksenko A, Ivanova L (1998) In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in Aspergillus nidulans. Mol Gen Genet 260:159–164PubMedCrossRefGoogle Scholar
  4. Aleksenko A, Nikolaev I, Vinetski Y, Clutterbuck AJ (1996) Gene expression from replicating plasmids in Aspergillus nidulans. Mol Gen Genet 253:242–246PubMedCrossRefGoogle Scholar
  5. Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J (2008a) A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Nat Acad Sci USA 105:4387–4392PubMedCrossRefGoogle Scholar
  6. Andersen MR, Nielsen ML, Nielsen J (2008b) Metabolic model integration of the bibliome, genome, metabolome, and reactome of Aspergillus niger. Mol Syst Biol 4:178PubMedCrossRefGoogle Scholar
  7. Andersen MR, Kildegaard KR, Hofmann G, Nielsen J (2009) Metabolic engineering of filamentous fungi. In: Smolke C (ed) Metabolic pathway engineering handbook, 1st edn. CRC, Boca Raton, pp 1–30Google Scholar
  8. Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I (1991) Optimization of l-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37:1108–1116PubMedCrossRefGoogle Scholar
  9. Begum MF, Alimon AR (2011) Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC4857.01 for fermentable sugar production. Elect J Biotechnol 14:1–9Google Scholar
  10. Bercovitz A, Peleg Y, Battat E, Rokem JS, Goldberg I (1990) Localisation of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl Environ Microbiol 56:1594–1597PubMedGoogle Scholar
  11. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMedCrossRefGoogle Scholar
  12. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  13. Christensen T, Wøldike H, Boel E, Mortensen SB, Hjortshøj K, Thim L, Hansen MT (1988) High level expression of recombinant genes in Aspergillus oryzae. Biotechnol 6:1419–1422CrossRefGoogle Scholar
  14. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56PubMedCrossRefGoogle Scholar
  15. de Jongh WA, Nielsen J (2008) Enhanced citric acid production through gene insertion in Aspergillus niger. Metab Eng 10:87–96PubMedCrossRefGoogle Scholar
  16. Duarte JC, Costa-Ferreira M (1994) Aspergilli and lignocellulosics: enzymology and biotechnological applications. FEMS Microbiol Rev 13:377–386PubMedCrossRefGoogle Scholar
  17. Fowler T, Rey MW, Vaha-Vahe P, Power SD, Berka RM (1993) The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol 9:989–998PubMedCrossRefGoogle Scholar
  18. Goldberg I, Rokem JS, Pines O (2006) Organic acids: old metabolites, new themes. J Chem Technol Biotechnol 81:1601–1611CrossRefGoogle Scholar
  19. Grobler J, Bauer F, Subden RE, Hendrik J, Van Vuuren V (2005) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11:1485–1491CrossRefGoogle Scholar
  20. Hjort CM (2006) Production of food additives using filamentous fungi. In: Heller KJ (ed) Genetically engineered food, 2nd edn. Wiley-VCH, Weinheim, pp 95–108CrossRefGoogle Scholar
  21. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedCrossRefGoogle Scholar
  22. Hynes MJ (1996) Genetic transformation of filamentous fungi. J Genet 75:297–311CrossRefGoogle Scholar
  23. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15PubMedCrossRefGoogle Scholar
  24. Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196PubMedGoogle Scholar
  25. Kato M, Sekine K, Tsukagoshi N (1996) Sequence-specific binding sites in the Taka-amylase A G2 promoter for the CreA repressor mediating carbon catabolite repression. Biosci Biotechnol Biochem 60:1776–1779PubMedCrossRefGoogle Scholar
  26. Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479PubMedGoogle Scholar
  27. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75PubMedCrossRefGoogle Scholar
  28. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Rao Juvvadi P, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J-I, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161PubMedCrossRefGoogle Scholar
  29. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal bio/technology for industry, agriculture, and medicine. Kluwer/Plenum, New York, pp 307–340CrossRefGoogle Scholar
  30. Meijer S, Nielsen ML, Olsson L, Nielsen J (2009) Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. J Ind Microbiol Biotechnol 36:1275–1280PubMedCrossRefGoogle Scholar
  31. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45:878–889PubMedCrossRefGoogle Scholar
  32. Moon SY, Hong SH, Kim TY, Lee SY (2008) Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 40:312–320CrossRefGoogle Scholar
  33. Nexant (2009) Maleic anhydride. Nexant, Inc., White Plains. Available at http://www.chemsystems.com/reports/search/docs/abstracts/0708_8_abs.pdf
  34. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253PubMedCrossRefGoogle Scholar
  35. Osmani SA, Scrutton MC (1983) The subcellular localisation of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur J Biochem 133:551–560PubMedCrossRefGoogle Scholar
  36. Peleg Y, Stieglitz B, Goldberg I (1988) Malic acid accumulation by Aspergillus flavus. I. Biochemical aspects of acid biosynthesis. Appl Microbiol Biotechnol 28:69–75CrossRefGoogle Scholar
  37. Peleg Y, Battat E, Scrutton MC, Goldberg I (1989) Isoenzyme pattern and sub-cellular localisation of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl Microbiol Biotechnol 32:334–339CrossRefGoogle Scholar
  38. Prathumpai W, Gabelgaard JB, Wanchanthuek P, van de Vondervoort PJI, de Groot MJL, McIntyre M, Nielsen J (2003) Metabolic control analysis of xylose catabolism in Aspergillus. Biotechnol Prog 19:1136–1141PubMedCrossRefGoogle Scholar
  39. Roa Engel CA, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389PubMedCrossRefGoogle Scholar
  40. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108PubMedCrossRefGoogle Scholar
  41. Schmid J, Stahl U, Meyer V (2009) Genetic and metabolic engineering in filamentous fungi. In: Anke T, Weber D (eds) The Mycota XV, physiology and genetics, 1st edn. Springer, Berlin, pp 377–392CrossRefGoogle Scholar
  42. Skory CD (2004) Repair of plasmid DNA used for transformation of Rhizopus oryzae by gene conversion. Curr Genet 45:302–310PubMedCrossRefGoogle Scholar
  43. Skory CD (2005) Inhibition of non-homologous end joining and integration of DNA upon transformation of Rhizopus oryzae. Mol Genet Genomics 274:373–383PubMedCrossRefGoogle Scholar
  44. Skory CD, Ibrahim AS (2007) Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99-880. Curr Genet 52:23–33PubMedCrossRefGoogle Scholar
  45. Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Tamura G (1992) Deletion analysis of the Taka-amylase A gene promoter using a homologous transformation system in Aspergillus oryzae. Biosci Biotechnol Biochem 56:1849–1853PubMedCrossRefGoogle Scholar
  46. Verdoes JC, Punt PJ, Schrickx JM, van Verseveld HW, Stouthamer AH, van den Hondel CAMJJ (1993) Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res 2:84–92PubMedCrossRefGoogle Scholar
  47. Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J (2008) Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9:245–258PubMedCrossRefGoogle Scholar
  48. Werpy T, Petersen G (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy, WashingtonGoogle Scholar
  49. Zelle R, de Hulster ME, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777PubMedCrossRefGoogle Scholar
  50. Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-Malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stephen H. Brown
    • 1
  • Lena Bashkirova
    • 1
  • Randy Berka
    • 1
  • Tyler Chandler
    • 1
  • Tammy Doty
    • 1
  • Keith McCall
    • 1
    • 2
  • Michael McCulloch
    • 1
  • Sarah McFarland
    • 1
  • Sheryl Thompson
    • 1
  • Debbie Yaver
    • 1
  • Alan Berry
    • 1
  1. 1.Novozymes, Inc.DavisUSA
  2. 2.Novozymes A/SBagsværdDenmark

Personalised recommendations