Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 4, pp 1853–1861 | Cite as

Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions

  • R. Hasegawa
  • K. Toyama
  • K. Miyanaga
  • Y. TanjiEmail author
Environmental biotechnology

Abstract

Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

Keywords

Souring Sulfate-reducing bacteria Secondary recovery Volatile fatty acid 

Notes

Acknowledgment

This work was financially supported in part by Japan Oil, Gas, and Metals National Corporation (JOGMEC, Tokyo, Japan).

References

  1. Abboud MM, Khieifat KM, Batarseh M, Taraeneh KA, Al-Mustafa A, Al-Madadhah M (2007) Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactant by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol 41:432–439. doi: 10.1016/j.enzmictec.2007.03.011 CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Boll M, Heider J (2010) Anaerobic degradation of hydrocarbons: mechanisms of C–H-bond activation in the absence of oxygen. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1011–1024CrossRefGoogle Scholar
  4. Callaghan AV, Wawrik B, Ni Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148. doi: 10.1016/j.bbrc.2007.11.094 PubMedCrossRefGoogle Scholar
  5. Callaghan AV, Davidova IA, Sanage- Ashlock KV, Parisi A, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294. doi: 10.1021/es1002023 PubMedCrossRefGoogle Scholar
  6. Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA, Barragan MJL, Garcia JL, Diaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Rev 73:71–133. doi: 10.1128/ MMBR.00021-08 CrossRefGoogle Scholar
  7. Dunsmore B, Youldon J, Thrasher DR, Vance I (2006) Effect of nitrate treatment on a mixed species, oil field microbial biofilm. J Ind Microbiol Biotechnol 33:454–462. doi: 10.1007/s10295-006-0095-2 PubMedCrossRefGoogle Scholar
  8. Eckford RE, Fedorak PM (2002) Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced water from three western Canadian oil fields. J Ind Microbiol Biotechnol 29:243–254. doi: 10.1038/sj.jim.7000304 PubMedCrossRefGoogle Scholar
  9. Gieg LM, Davidova IA, Duncan KE, Sufilita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086. doi: 10.1111/j.1462-2920.2010.02282.x PubMedCrossRefGoogle Scholar
  10. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282. doi: 10.1007/s00253-011-3542-6 PubMedCrossRefGoogle Scholar
  11. Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, ArensdorfJJ VG (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74:4324–4335. doi: 10.1128/ AEM.00419-08 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Handa T, LiM C, Takase Y, Miyanaga K, Tomoe Y, Tanji Y (2010) Microbial and chemical characterization of oil fields water through artificial souring experiment. J Chem Eng Jpn 43:792–797CrossRefGoogle Scholar
  13. Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345. doi: 10.1021/bp020128f PubMedCrossRefGoogle Scholar
  14. Jacobson M, Charlson RJ, Rodhe H, Orians GH (2000) Earth system science. Elsevier, LondonGoogle Scholar
  15. Kaster KM, Grigorian A, Jenneman G, Voordown G (2007) Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol 75:195–203. doi: 10.1007/s00253-006-0796-5 PubMedCrossRefGoogle Scholar
  16. Kjellerup BV, Veeh RH, Sumithraratne P, Thomesen TR, Buckingham-Meyer K, Frølund B, Sturman P (2005) Monitoring of microbial souring in chemically treated, produced-water biofilm systems using molecular techniques. J Ind Microbiol Biotechnol 32:163–170. doi: 10.1007/s10295-005-0222-5 PubMedCrossRefGoogle Scholar
  17. Kleinseteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851–873. doi: 10.1007/s00253-012-4025-0 CrossRefGoogle Scholar
  18. Kumaraswamy R, Ebert S, Gray MR, Fedorak PM, Foght JM (2011) Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Environ Biotechnol 89:2027–2038. doi: 10.1007/s00253-010-2974-8 CrossRefGoogle Scholar
  19. Mbadinga SM, Li-Ying ZL, Liu J, Gu J, Mu B (2011) Microbial communities involved in anaerobic degradation of alkane. Int Biodeterior Biodegrad 65:1–13. doi: 10.1016/j.ibiod.2010.11.009 CrossRefGoogle Scholar
  20. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414. doi: 10.1016/j.copbio.2011.02.009 PubMedCrossRefGoogle Scholar
  21. Morono Y, Takano S, Miyanaga K, Tanji Y, Unno H, Hori K (2004) Application of glutaraldehyde for the staining esterase-active cells with carboxyfluorescein diacetate. Biotechnol Lett 26:379–383PubMedCrossRefGoogle Scholar
  22. Ommedal H, Torsvik T (2007) Desulfotignum Toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 57:2865–2869. doi: 10.1099/ijs.0.65067-0 PubMedCrossRefGoogle Scholar
  23. Plankaert M (2005) Oil reservoir and oil production. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington DC, pp 123–142Google Scholar
  24. Popp N, Schlomann M, Mau M (2006) Bacterial diversity in active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152:3291–3304. doi: 10.1099/mic.0.29054-0 PubMedCrossRefGoogle Scholar
  25. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451PubMedCentralPubMedGoogle Scholar
  26. Rabus R, Jarling R, Lahme S, Kuhner S, Heider J, Widdel F, Wilkes H (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586. doi: 10.1111/j.1462-2920.2011.02529.x PubMedCrossRefGoogle Scholar
  27. Ravot G, Magot M, Fardeau M, Patel BKC, Thomas P, Garcia J, Ollivier B (1999) Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147. doi: 10.1099/00207713-49-3-1141 PubMedCrossRefGoogle Scholar
  28. Selmer T, Pierik AJ, Heider J (2005) New glycyl radical enzymes catalyzing key metabolic steps in anaerobic bacteria. Biol Chem 386:981–988. doi: 10.1515/BC.2005.114 PubMedCrossRefGoogle Scholar
  29. Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington DC, pp 201–213Google Scholar
  30. Thauer RK, Badziong W (1980) Respiration with sulfate as electron accepter. In: Knowles GJ (ed) Diversity of bacterial respiratory systems, vol 2. CRC, Boca Raton, pp 65–85Google Scholar
  31. Trueper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Anton Leeuw J Gen M 30:225–238CrossRefGoogle Scholar
  32. Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington DC, pp 3–19Google Scholar
  33. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1997–2021CrossRefGoogle Scholar
  34. Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046. doi: 10.1111/j.1462-2920.2006.01230.x PubMedCrossRefGoogle Scholar
  35. Yan ST, Miyanaga K, Xing XH, Tanji Y (2008) Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge. Biochem Eng J 39:598–603. doi: 10.1016/j.bej.2007.12.002 CrossRefGoogle Scholar
  36. Zrafi-Nouira I, Guermazi S, Chouari R, Safi NMD, Pelletier E, Bakhrouf A, Saidane-Mosbahi D, Sghir A (2009) Molecular diversity analysis and bacterial population dynamics of adapted seawater microbiota during the degradation of Tunisian zarzatine oil. Biodegradation 20:467–486. doi: 10.1007/s10532-008-9235-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations