Applied Microbiology and Biotechnology

, Volume 97, Issue 18, pp 8273–8281

Cholesterol-lowering probiotics: in vitro selection and in vivo testing of bifidobacteria

  • Alessandra Bordoni
  • Alberto Amaretti
  • Alan Leonardi
  • Elisa Boschetti
  • Francesca Danesi
  • Diego Matteuzzi
  • Lucia Roncaglia
  • Stefano Raimondi
  • Maddalena Rossi
Applied microbial and cell physiology


Thirty-four strains of bifidobacteria belonging to Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, and Bifidobacterium pseu-docatenulatum were assayed in vitro for the ability to assimilate cholesterol and for bile salt hydrolase (BSH) against glycocholic and taurodeoxycholic acids (GCA and TDCA). Cholesterol assimilation was peculiar characteristic of two strains belonging to the species B. bifidum (B. bifidum MB 107 and B. bifidum MB 109), which removed 81 and 50 mg of cholesterol per gram of biomass, being the median of specific cholesterol absorption by bifidobacteria 19 mg/g. Significant differences in BSH activities were not established among bifidobacterial species. However, the screening resulted in the selection of promising strains able to efficiently deconjugate GCA and TDCA. No relationship was recognized between BSH phenotype and the extent of cholesterol assimilation. On the basis of cholesterol assimilation or BSHGCA and BSHTDCA activities, B. bifidum MB 109 (DSMZ 23731), B. breve MB 113 (DSMZ 23732), and B. animalis subsp. lactis MB 2409 (DSMZ 23733) were combined in a probiotic mixture to be fed to hypercholesterolemic rats. The administration of this probiotic formulation resulted in a significant reduction of total cholesterol and low-density cholesterol (LDL-C), whereas it did not affect high-density cholesterol (HDL-C) and HDL-C/LDL-C ratio.


Bifidobacterium Probiotic Cholesterol Bile salt hydrolase In vivo In vitro 


  1. Andrade S, Borges N (2009) Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J Dairy Res 76:469–474. doi:10.1017/S0022029909990173 PubMedCrossRefGoogle Scholar
  2. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738. doi:10.1128/AEM.72.3.1729-1738.2006 PubMedCrossRefGoogle Scholar
  3. Carey MC, Duane WC (1994) Enterohepatic circulation. In: Arias IM, Boyer N, Fausto N, Jackoby WB, Schachter DA, Shafritz DA (eds) The liver: biology and pathobiology. Raven, New York, pp 719–738Google Scholar
  4. Dambekodi PC, Gilliland SE (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci 81:1818–1824PubMedCrossRefGoogle Scholar
  5. De Smet I, Van Hoorde L, Vande Woestyne M, Christiaens H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301. doi:10.1111/j.1365-2672.1995.tb03140.x PubMedCrossRefGoogle Scholar
  6. De Smet I, De Boever P, Verstraete W (1998) Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Brit J Nutr 79:185–194. doi:10.1079/Bjn19980030 PubMedCrossRefGoogle Scholar
  7. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, Akbarian-Moghari A (2011) Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 94:3288–3294. doi:10.3168/jds.2010-4128 PubMedCrossRefGoogle Scholar
  8. FAO/WHO working group (2001) Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina (October 1–4, 2001)Google Scholar
  9. Ginsberg HN (1998) Lipoprotein physiology. Endocrinol Metab Clin N Am 27:503–519. doi:10.1016/S0889-8529(05)70023-2 CrossRefGoogle Scholar
  10. Grill JP, Cayuela C, Antoine JM, Schneider F (2000) Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol 31:154–156. doi:10.1046/j.1365-2672.2000.00792.x PubMedCrossRefGoogle Scholar
  11. Hansbury E, Scallen TJ (1978) Resolution of desmosterol, cholesterol, and other sterol intermediates by reverse-phase high-pressure liquid chromatography. J Lipid Res 19:742–746PubMedGoogle Scholar
  12. Hashimoto M, Shinozuka K, Tanabe Y, Shahdat HM, Gamoh S, Kwon YM, Tanaka Y, Kunitomo M, Masumura S (1998) Long-term supplementation with a high cholesterol diet decreases the release of ATP from the caudal artery in aged rats. Life Sci 63:1879–1885. doi:10.1016/S0024-3205(98)00464-0 PubMedCrossRefGoogle Scholar
  13. Jones ML, Martoni CJ, Parent M, Prakash S (2012a) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Brit J Nutr 107:1505–1513. doi:10.1017/S0007114511004703 PubMedCrossRefGoogle Scholar
  14. Jones ML, Martoni CJ, Prakash S (2012b) Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 66:1234–1241. doi:10.1038/ejcn.2012.126 PubMedCrossRefGoogle Scholar
  15. Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S (2013) Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther 13:631–642. doi:10.1517/14712598.2013.758706 PubMedCrossRefGoogle Scholar
  16. Kimoto H, Ohmomo S, Okamoto T (2002) Cholesterol removal from media by lactococci. J Dairy Sci 85:3182–3188. doi:10.3168/jds.S0022-0302(02)74406-8 PubMedCrossRefGoogle Scholar
  17. Klaver FAM, Vandermeer R (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microb 59:1120–1124Google Scholar
  18. Kumar R, Grover S, Batish VK (2011) Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague–Dawley rats. Brit J Nutr 105:561–573. doi:10.1017/S0007114510003740 PubMedCrossRefGoogle Scholar
  19. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902917. doi:10.1155/2012/902917 PubMedCrossRefGoogle Scholar
  20. Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 88:55–66. doi:10.3168/jds.S0022-0302(05)72662-X PubMedCrossRefGoogle Scholar
  21. Liong MT, Shah NP (2006) Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J Dairy Sci 89:1390–1399. doi:10.3168/jds.S0022-0302(06)72207-X PubMedCrossRefGoogle Scholar
  22. Lye HS, Rahmat-Ali GR, Liong MT (2010a) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20:169–175. doi:10.1016/j.idairyj.2009.10.003 CrossRefGoogle Scholar
  23. Lye HS, Rusul G, Liong MT (2010b) Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 93:1383–1392. doi:10.3168/jds.2009-2574 PubMedCrossRefGoogle Scholar
  24. Meyer H (1957) The ninhydrin reaction and its analytical applications. Biochem J 67:333–340PubMedGoogle Scholar
  25. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. doi:10.1111/j.1574-6968.2012.02593.x PubMedCrossRefGoogle Scholar
  26. Noh DO, Kim SH, Gilliland SE (1997) Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J Dairy Sci 80:3107–3113. doi:10.3168/jds.S0022-0302(97)76281-7 PubMedCrossRefGoogle Scholar
  27. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522. doi:10.3390/ijms11062499 PubMedCrossRefGoogle Scholar
  28. Pereira DI, Gibson GR (2002a) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693. doi:10.1128/AEM.68.9.4689-4693.2002 PubMedCrossRefGoogle Scholar
  29. Pereira DI, Gibson GR (2002b) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37:259–281. doi:10.1080/10409230290771519 PubMedCrossRefGoogle Scholar
  30. Rahman NU, Phonsombat S, Bochinski D, Carrion RE, Nunes L, Lue TF (2007) An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 100:658–663. doi:10.1111/j.1464-410X.2007.07069.x PubMedCrossRefGoogle Scholar
  31. Reynier MO, Montet JC, Gerolami A, Marteau C, Crotte C, Montet AM, Mathieu S (1981) Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. J Lipid Res 22:467–473PubMedGoogle Scholar
  32. Rossi M, Amaretti A (2010) Probiotic properties of bifidobacteria. In: Mayo B, van Sinderen D (eds) Bifidobacteria: genomics and molecular aspects. Horizon, Rowan House, UK, pp 97–123. ISBN 978-1-904455-68-4Google Scholar
  33. Ryu JK, Shin HY, Song SU, Oh SM, Piao S, Han JY, Park KW, Suh JK (2006) Downregulation of angiogenic factors and their downstream target molecules affects the deterioration of erectile function in a rat model of hypercholesterolemia. Urology 67:1329–1334. doi:10.1016/j.urology.2005.12.027 PubMedCrossRefGoogle Scholar
  34. Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M (2010) The effects of probiotic and conventional yoghurt on lipid profile in women. Brit J Nutr 103:1778–1783. doi:10.1017/S0007114509993801 PubMedCrossRefGoogle Scholar
  35. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 108:4523–4530. doi:10.1073/pnas.1006734107 PubMedCrossRefGoogle Scholar
  36. Tahri K, Grill JP, Schneider F (1997) Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol 34:79–84. doi:10.1007/s002849900148 PubMedCrossRefGoogle Scholar
  37. Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535. doi:10.3168/jds.S0022-0302(99)75506-2 PubMedCrossRefGoogle Scholar
  38. Usman, Hosono A (2000) Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J Dairy Sci 83:1705–1711. doi:10.3168/jds.S0022-0302(00)75039-9 PubMedCrossRefGoogle Scholar
  39. Williams NT (2010) Probiotics. Am J Health Syst Pharm 67:449–458. doi:10.2146/ajhp090168 PubMedCrossRefGoogle Scholar
  40. Zulet MA, Martinez JA (1995) Corrective role of chickpea intake on a dietary-induced model of hypercholesterolemia. Plant Foods Hum Nutr 48:269–277. doi:10.1007/BF01088448 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandra Bordoni
    • 1
  • Alberto Amaretti
    • 2
  • Alan Leonardi
    • 2
  • Elisa Boschetti
    • 3
  • Francesca Danesi
    • 1
  • Diego Matteuzzi
    • 4
  • Lucia Roncaglia
    • 2
  • Stefano Raimondi
    • 2
  • Maddalena Rossi
    • 2
  1. 1.Department of Agro-Food Sciences and TechnologiesUniversity of BolognaCesenaItaly
  2. 2.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Biomedical and Neuromotor ScienceUniversity of BolognaBolognaItaly
  4. 4.Department of Pharmaceutical SciencesUniversity of BolognaBolognaItaly

Personalised recommendations