Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7111–7120 | Cite as

Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method

  • Mareike WenningEmail author
  • Siegfried Scherer
Mini-Review

Abstract

Fourier transform infrared (FTIR) spectroscopy was introduced in 1991 as a technique to identify and classify microbes. Since then, it has gained growing interest and has undergone a remarkable evolution. Highly sophisticated spectrometers have been developed, enabling a high sample throughput. Today, the generation of high-quality data in a short time and the application of the technique for rapid and reliable identification of microbes to the species level are well documented. What makes FTIR spectroscopy even more attractive is the fact that spectral information can also be exploited for strain typing purposes, which is particularly important for epidemiological analyses and some technological applications. Accordingly, in recent years, FTIR spectroscopy has been increasingly used for typing and classifying microorganisms below the species level. The intention of this review is to give an overview over current knowledge and strategies of using FTIR spectroscopy for species identification and to describe different approaches for strain typing.

Keywords

FTIR spectroscopy Species identification Strain typing Chemometrics 

Notes

Acknowledgments

The authors would like to thank Evi Lang Halter for providing spectra of Listeria monocytogenes.

References

  1. Adt I, Kohler A, Gognies S, Budin J, Sandt C, Belarbi A, Manfait M, Sockalingum GD (2010) FTIR spectroscopic discrimination of Saccharomyces cerevisiae and Saccharomyces bayanus strains. Can J Microbiol 56:793–801PubMedCrossRefGoogle Scholar
  2. Alvarez-Ordonez A, Mouwen DJ, Lopez M, Prieto M (2011) Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods 84:369–378PubMedCrossRefGoogle Scholar
  3. Amiali NM, Mulvey MR, Sedman J, Louie M, Simor AE, Ismail AA (2007) Rapid identification of coagulase-negative staphylococci by Fourier transform infrared spectroscopy. J Microbiol Methods 68:236–242PubMedCrossRefGoogle Scholar
  4. Amiali NM, Golding GR, Sedman J, Simor AE, Ismail AA (2011) Rapid identification of community-associated methicillin-resistant Staphylococcus aureus by Fourier transform infrared spectroscopy. Diagn Microbiol Infect Dis 70:157–166PubMedCrossRefGoogle Scholar
  5. Baldauf NA, Rodriguez-Romo LA, Mannig A, Yousef AE, Rodriguez-Saona LE (2007) Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy. J Microbiol Methods 68:106–114PubMedCrossRefGoogle Scholar
  6. Becker K, Laham NA, Fegeler W, Proctor RA, Peters G, von Eiff C (2006) Fourier-transform infrared spectroscopic analysis is a powerful tool for studying the dynamic changes in Staphylococcus aureus small-colony variants. J Clin Microbiol 44:3274–3278PubMedCrossRefGoogle Scholar
  7. Beekes M, Lasch P, Naumann D (2007) Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Vet Microbiol 123:305–319PubMedCrossRefGoogle Scholar
  8. Behrendt U, Ulrich A, Schumann P, Naumann D, Suzuki K (2002) Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. Int J Syst Evol Microbiol 52:1441–1454PubMedCrossRefGoogle Scholar
  9. Bosch A, Golowczyc MA, Abraham AG, Garrote GL, De Antoni GL, Yantorno O (2006) Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy. Int J Food Microbiol 111:280–287PubMedCrossRefGoogle Scholar
  10. Bosch A, Minan A, Vescina C, Degrossi J, Gatti B, Montanaro P, Messina M, Franco M, Vay C, Schmitt J, Naumann D, Yantorno O (2008) Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol 46:2535–2546PubMedCrossRefGoogle Scholar
  11. Bounphanmy S, Thammathaworn S, Thanee N, Pirapathrungsuriya K, Beardall J, McNaughton D, Heraud P (2010) Discrimination of cyanobacterial strains isolated from saline soils in Nakhon Ratchasima, Thailand using attenuated total reflectance FTIR spectroscopy. J Biophotonics 3:534–541PubMedCrossRefGoogle Scholar
  12. Büchl NR, Wenning M, Seiler H, Mietke-Hofmann H, Scherer S (2008) Reliable identification of closely related Issatchenkia and Pichia species using artificial neural network analysis of Fourier-transform infrared spectra. Yeast 25:787–798PubMedCrossRefGoogle Scholar
  13. Büchl NR, Hutzler M, Mietke-Hofmann H, Wenning M, Scherer S (2010) Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J Appl Microbiol 109:783–791PubMedCrossRefGoogle Scholar
  14. Caro-Quintero A, Konstantinidis KT (2012) Bacterial species may exist, metagenomics reveal. Environ Microbiol 14:347–355PubMedCrossRefGoogle Scholar
  15. Chen G, Kocaoglu-Vurma NA, Harper WJ, Rodriguez-Saona LE (2009) Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening. J Dairy Sci 92:3575–3584PubMedCrossRefGoogle Scholar
  16. Cheung HY, Cui J, Sun S (1999) Real-time monitoring of Bacillus subtilis endospore components by attenuated total reflection Fourier-transform infrared spectroscopy during germination. Microbiology 145:1043–1048PubMedCrossRefGoogle Scholar
  17. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P, Endtz HP (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67:1461–1469PubMedCrossRefGoogle Scholar
  18. Coutinho CP, Sa-Correia I, Lopes JA (2009) Use of Fourier transform infrared spectroscopy and chemometrics to discriminate clinical isolates of bacteria of the Burkholderia cepacia complex from different species and ribopatterns. Anal Bioanal Chem 394:2161–2171PubMedCrossRefGoogle Scholar
  19. Davis R, Mauer LJ (2011) Subtyping of Listeria monocytogenes at the haplotype level by Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. Int J Food Microbiol 150:140–149PubMedCrossRefGoogle Scholar
  20. Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, El-Sayed I, El-Sayed MA (2004) Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol 70:4980–4988PubMedCrossRefGoogle Scholar
  21. Essendoubi M, Toubas D, Bouzaggou M, Pinon JM, Manfait M, Sockalingum GD (2005) Rapid identification of Candida species by FT-IR microspectroscopy. Biochim Biophys Acta 1724:239–247PubMedCrossRefGoogle Scholar
  22. Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77PubMedCrossRefGoogle Scholar
  23. Garon D, El Kaddoumi A, Carayon A, Amiel C (2010) FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments. Mycopathologia 170:131–142PubMedCrossRefGoogle Scholar
  24. Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74:2210–2217PubMedCrossRefGoogle Scholar
  25. Goodacre R, Timmins EM, Rooney PJ, Rowland JJ, Kell DB (1996) Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 140:233–239PubMedCrossRefGoogle Scholar
  26. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170PubMedCrossRefGoogle Scholar
  27. Grunert T, Wenning M, Barbagelata MS, Fricker M, Sordelli DO, Buzzola FR, Ehling-Schulz M (2013) Rapid and reliable identification of Staphylococcus aureus capsular serotypes by means of artificial neural network-assisted Fourier transform infrared spectroscopy. J Clin Microbiol 51:2261–2266PubMedCrossRefGoogle Scholar
  28. Gue M, Dupont V, Dufour A, Sire O (2001) Bacterial swarming: a biochemical time-resolved FTIR-ATR study of Proteus mirabilis swarm-cell differentiation. Biochemistry 40:11938–11945PubMedCrossRefGoogle Scholar
  29. Guibet F, Amiel C, Cadot P, Cordevant C, Desmonts MH, Lange M, Marecat A, Travert J, Denis C, Mariey L (2003) Discrimination and classification of Enterococci by Fourier transform infrared (FT-IR) spectroscopy. Vibr Spectrosc 33:133–142CrossRefGoogle Scholar
  30. Helm D, Labischinski H, Naumann D (1991a) Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach. J Microbiol Methods 14:127–142CrossRefGoogle Scholar
  31. Helm D, Labischinski H, Schallehn G, Naumann D (1991b) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137:69–79PubMedCrossRefGoogle Scholar
  32. Kansiz M, Heraud P, Wood B, Burden F, Beardall J, McNaughton D (1999) Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains. Phytochemistry 52:407–417CrossRefGoogle Scholar
  33. Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, Sandt C, Ami D, Orsini F, Doglia SM, Allouch P, Mainfait M, Puppels GJ, Naumann D (2001) Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39:1763–1770PubMedCrossRefGoogle Scholar
  34. Kuhm AE, Suter D, Felleisen R, Rau J (2009) Identification of Yersinia enterocolitica at the species and subspecies levels by Fourier transform infrared spectroscopy. Appl Environ Microbiol 75:5809–5813PubMedCrossRefGoogle Scholar
  35. Kümmerle M, Scherer S, Seiler H (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64:2207–2214PubMedGoogle Scholar
  36. Lasch P (2012) Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst 117:100–114CrossRefGoogle Scholar
  37. Lin M, Al-Holy M, Chang SS, Huang Y, Cavinato AG, Kang DH, Rasco BA (2005) Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. Int J Food Microbiol 105:369–376PubMedCrossRefGoogle Scholar
  38. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271PubMedCrossRefGoogle Scholar
  39. Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, Endtz HP, Bruining HA, Naumann D, Puppels GJ (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41:324–329PubMedCrossRefGoogle Scholar
  40. Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibr Spectrosc 26:151–159CrossRefGoogle Scholar
  41. Mouwen DJ, Weijtens MJ, Capita R, Alonso-Calleja C, Prieto M (2005) Discrimination of enterobacterial repetitive intergenic consensus PCR types of Campylobacter coli and Campylobacter jejuni by Fourier transform infrared spectroscopy. Appl Environ Microbiol 71:4318–4324PubMedCrossRefGoogle Scholar
  42. Mouwen DJ, Capita R, Alonso-Calleja C, Prieto-Gomez J, Prieto M (2006) Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy. J Microbiol Methods 67:131–140PubMedCrossRefGoogle Scholar
  43. Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131Google Scholar
  44. Naumann D (2008) Vibrational spectroscopy in microbiology and medical diagnostics. In: Lasch P, Kneipp J (eds) Biomedical vibrational spectroscopy. Wiley, Hoboken, pp 1–8CrossRefGoogle Scholar
  45. Naumann A (2009) A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Analyst 134:1215–1223PubMedCrossRefGoogle Scholar
  46. Naumann D, Helm D, Labischinski H (1991a) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82PubMedCrossRefGoogle Scholar
  47. Naumann D, Helm D, Labischinski H, Giesbrecht P (1991b) The characterization of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH, New York, pp 43–96Google Scholar
  48. Oberreuter H, Seiler H, Scherer S (2002) Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52:91–100PubMedGoogle Scholar
  49. Oust Janbu A, Moretro T, Bertrand D, Kohler A (2008) FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species. FEMS Microbiol Lett 278:164–170CrossRefGoogle Scholar
  50. Oust A, Moretro T, Kirschner C, Narvhus JA, Kohler A (2004) FT-IR spectroscopy for identification of closely related lactobacilli. J Microbiol Methods 59:149–162PubMedCrossRefGoogle Scholar
  51. Oust A, Moretro T, Naterstad K, Sockalingum GD, Adt I, Manfait M, Kohler A (2006) Fourier transform infrared and raman spectroscopy for characterization of Listeria monocytogenes strains. Appl Environ Microbiol 72:228–232PubMedCrossRefGoogle Scholar
  52. Paramithiotis S, Muller MRA, Ehrmann MA, Tsakalidou E, Seiler H, Vogel R, Kalantzopoulos G (2000) Polyphasic identification of wild yeast strains isolated from Greek sourdoughs. Syst Appl Microbiol 23:156–164PubMedCrossRefGoogle Scholar
  53. Petrich W (2008) From study design to data analysis. In: Lasch P, Kneipp J (eds) Biomedical vibrational spectroscopy. Wiley, Hoboken, pp 315–332Google Scholar
  54. Prabhakar V, Kocaoglu-Vurma N, Harper J, Rodriguez-Saona L (2011) Classification of Swiss cheese starter and adjunct cultures using Fourier transform infrared microspectroscopy. J Dairy Sci 94:4374–4382PubMedCrossRefGoogle Scholar
  55. Preisner O, Lopes JA, Guiomar R, Machado J, Menezes JC (2007) Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Anal Bioanal Chem 387:1739–1748PubMedCrossRefGoogle Scholar
  56. Preisner O, Guiomar R, Machado J, Menezes JC, Lopes JA (2010) Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types. Appl Environ Microbiol 76:3538–3544PubMedCrossRefGoogle Scholar
  57. Randall HM, Smith DW, Colm AC, Nungester WJ (1951) Correlation of biologic properties of strains of Mycobacterium with infrared spectrum. Am Rev Tuberc 63:372–380PubMedGoogle Scholar
  58. Rebuffo CA, Schmitt J, Wenning M, von Stetten F, Scherer S (2006) Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. Appl Environ Microbiol 72:994–1000PubMedCrossRefGoogle Scholar
  59. Rebuffo-Scheer CA, Kirschner C, Staemmler M, Naumann D (2007a) Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-transform infrared microspectroscopy. J Microbiol Methods 68:282–290PubMedCrossRefGoogle Scholar
  60. Rebuffo-Scheer CA, Schmitt J, Scherer S (2007b) Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl Environ Microbiol 73:1036–1040PubMedCrossRefGoogle Scholar
  61. Rebuffo-Scheer CA, Dietrich J, Wenning M, Scherer S (2008) Identification of five Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Anal Bioanal Chem 390:1629–1635PubMedCrossRefGoogle Scholar
  62. Samelis J, Bleicher A, Delbes-Paus C, Kakouri A, Neuhaus K, Montel MC (2011) FTIR-based polyphasic identification of lactic acid bacteria isolated from traditional Greek Graviera cheese. Food Microbiol 28:76–83PubMedCrossRefGoogle Scholar
  63. Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C, Jaussaud M, Leon A, Pinon JM, Manfait M, Toubas D (2003) Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41:954–959PubMedCrossRefGoogle Scholar
  64. Sandt C, Madoulet C, Kohler A, Allouch P, De Champs C, Manfait M, Sockalingum GD (2006) FT-IR microspectroscopy for early identification of some clinically relevant pathogens. J Appl Microbiol 101:785–797PubMedCrossRefGoogle Scholar
  65. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  66. Schmidt VS, Kaufmann V, Kulozik U, Scherer S, Wenning M (2012) Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. Int J Food Microbiol 154:1–9PubMedCrossRefGoogle Scholar
  67. Shapaval V, Moretro T, Suso HP, Asli AW, Schmitt J, Lillehaug D, Martens H, Bocker U, Kohler A (2010) A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J Biophotonics 3:512–521PubMedCrossRefGoogle Scholar
  68. Sockalingum GD, Bouhedja W, Pina P, Allouch P, Mandray C, Labia R, Millot JM, Manfait M (1997) ATR-FTIR spectroscopic investigation of imipenem-susceptible and -resistant Pseudomonas aeruginosa isogenic strains. Biochem Biophys Res Commun 232:240–246PubMedCrossRefGoogle Scholar
  69. Timmins EM, Howell SA, Alsberg BK, Noble WC, Goodacre R (1998a) Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol 36:367–374PubMedGoogle Scholar
  70. Timmins EM, Quain DE, Goodacre R (1998b) Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Yeast 14:885–893PubMedCrossRefGoogle Scholar
  71. Tindall BJ, Brambilla E, Steffen M, Neumann R, Pukall R, Kroppenstedt RM, Stackebrandt E (2000) Cultivatable microbial biodiversity: gnawing at the Gordian knot. Environ Microbiol 2:310–318PubMedCrossRefGoogle Scholar
  72. Tintelnot K, Haase G, Seibold M, Bergmann F, Staemmler M, Franz T, Naumann D (2000) Evaluation of phenotypic markers for selection and identification of Candida dubliniensis. J Clin Microbiol 38:1599–1608PubMedGoogle Scholar
  73. Toubas D, Essendoubi M, Adt I, Pinon JM, Mainfait M, Sockalingum GD (2007) FTIR spectroscopy in medical mycology: applications to the differentiation and typing of Candida. Anal Bioanal Chem 387:1729–1737PubMedCrossRefGoogle Scholar
  74. Udelhoven T, Naumann D, Schmitt J (2000) Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl Spectrosc 54:1471–1479CrossRefGoogle Scholar
  75. Udelhoven T, Novozhilov M, Schmitt J (2003) The NeuroDeveloper: a tool for modular neural classification of spectroscopic data. Chemom Intell Lab Syst 66:219–226CrossRefGoogle Scholar
  76. van der Mei HC, Naumann D, Busscher HJ (1996) Grouping of Streptococcus mitis strains grown on different growth media by FT-IR. Infrared Phys Techn 37:561–564CrossRefGoogle Scholar
  77. Wenning M, Theilmann V, Scherer S (2006) Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ Microbiol 8:848–857PubMedCrossRefGoogle Scholar
  78. Wenning M, Scherer S, Naumann D (2008) Infrared spectroscopy in the identification of microorganisms. In: Diem M, Griffiths PR, Chalmers JM (eds) Vibrational spectroscopy for medical diagnosis. Wiley, Chichester, pp 71–96Google Scholar
  79. Wenning M, Büchl NR, Scherer S (2010) Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. J Biophotonics 3:493–505PubMedCrossRefGoogle Scholar
  80. Winder CL, Carr E, Goodacre R, Seviour R (2004) The rapid identification of Acinetobacter species using Fourier transform infrared spectroscopy. J Appl Microbiol 96:328–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL)Technische Universität MünchenFreisingGermany
  2. 2.Lehrstuhl für Mikrobielle Ökologie, Department of BiosciencesTechnische Universität MünchenFreisingGermany

Personalised recommendations