Applied Microbiology and Biotechnology

, Volume 97, Issue 20, pp 9055–9069 | Cite as

Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides

Applied genetics and molecular biotechnology

Abstract

The amino or carboxy-terminal regions of certain cell wall proteins are capable of anchoring foreign proteins or peptides on the cell wall of the yeast Saccharomyces cerevisiae. This possibility has resulted in the development of a methodology known as yeast display which has powerful applications in biotechnology, pharmacy, and medicine. This work describes the results of experiments in which the agglutinin Aga2p protein is used as an anchor and several leucine-based peptides have been introduced into its N-terminal or C-terminal position. We found that the sequence of these peptides can affect plasmid stability, growth kinetics, and levels of the fusion protein displayed, and we analyzed how the incubation conditions influence these parameters. Besides, we show that the introduction of these small peptides can modify the properties of cell cover; in particular, fusing five or ten leucine residues to the Aga2p protein results in greater hydrophobicity of the cell wall and also in increased resistance to the presence of the organic solvents acetonitrile and ethanol and to high salt concentrations. The introduction of the RLRLL sequence also results in higher resistance to the exposure of yeast cells to NaCl stress.

Keywords

Aga2 protein Cell wall hydrophobicity Short peptides Stress resistance Yeast display 

Notes

Acknowledgments

We are indebted to Drs. Wittrup and Neville for providing us with the pCTCON2 and pYD5 plasmids, respectively. We gratefully acknowledge SCSIE (Universitat de València) for access to its instrumental facilities of DNA sequencing, flow cytometry, and electron microscopy. This work has been supported by grants from the Spanish Ministry of Science and Technology BFU2008-04082-C02-01/BMC and BFU2011-23501/BMC.

Supplementary material

253_2013_5086_MOESM1_ESM.pdf (66 kb)
ESM 1 (PDF 65 kb)

References

  1. Adachi T, Ito J, Kawata K, Kaya M, Ishida H, Sahara H, Hata Y, Ogino C, Fukuda H, Kondo A (2008) Construction of an Aspergillus oryzae cell-surface display system using a putative GPI-anchored protein. Appl Microbiol Biotechnol 81:711–719. doi: 10.1007/s00253-008-1687-8 PubMedCrossRefGoogle Scholar
  2. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotech 15:1351–1357. doi: 10.1038/nbt1297-1351 CrossRefGoogle Scholar
  3. Bariotaki A, Kalaitzakis D, Smonou I (2012) Enzymatic reductions for the regio- and stereoselective synthesis of hydroxyketo esters and dihydroxy esters. Org Lett 14:1792–1795. doi: 10.1021/ol3003833 PubMedCrossRefGoogle Scholar
  4. Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461:217–236. doi: 10.1016/S0005-2736(99)00160-1 PubMedCrossRefGoogle Scholar
  5. Blazic M, Kovacevic G, Prodanovic O, Ostafe R, Gavrovic-Jankulovic M, Fischer R, Prodanovic R (2013) Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. Protein Expr Purif 89:175–180. doi: 0.1016/j.pep.2013.03.014 PubMedCrossRefGoogle Scholar
  6. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 6:553–557. doi: 10.1038/nbt0697-553 CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  8. Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–644. doi: 10.1007/s00253-002-0939-2 PubMedCrossRefGoogle Scholar
  9. Carrasco P, Pérez-Ortín JE, del Olmo M (2003) Arginase activity is a useful marker for nitrogen limitation during alcoholic fermentation. Syst Appl Microbiol 26:471–479. doi: 10.1078/072320203322497518 PubMedCrossRefGoogle Scholar
  10. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci USA 108:11399–113404. doi: 10.1073/pnas.1101046108 PubMedCrossRefGoogle Scholar
  11. Csuk R, Glanzer B (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97. doi: 10.1021/cr00001a004 CrossRefGoogle Scholar
  12. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257PubMedCrossRefGoogle Scholar
  13. Guan B, Lei J, Su S, Chen F, Duan Z, Chen Y, Gong X, Li H, Jin J (2012) Absence of Yps7p, a putative glycosylphosphatidylinositol-linked aspartyl protease in Pichia pastoris results in aberrant cell wall composition and increased osmotic stress resistance. FEMS Yeast Res 12:969–979. doi: 10.1111/1567-1364. 12002 PubMedCrossRefGoogle Scholar
  14. Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A (2010) Surfactant-modified yeast whole cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol 87:537–543. doi: 10.1007/s00253-010-2519-1 PubMedCrossRefGoogle Scholar
  15. Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259. doi: 10.1016/j.bbrc.2011.04.139 PubMedCrossRefGoogle Scholar
  16. Hardwick KG, Boothroyd JC, Rudner AD, Pelham HRB (1992) Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J 11:4187–4195PubMedGoogle Scholar
  17. Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M (2009) Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Int J Food Microbiol 130:122–130. doi: 10.1016/j.ijfoodmicro.2009.01.017 PubMedCrossRefGoogle Scholar
  18. Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145:211–220. doi: 10.1016/j.ijfoodmicro.2010.12.023 PubMedCrossRefGoogle Scholar
  19. Klis FM, Caro LHP, Vossen JH, Kapteyn JC, Ram AFJ, Montijn RC, van Berkel MAA, van der Ende H (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem Soc Trans 25:856–860. doi: 10.1042/bst0250856 PubMedGoogle Scholar
  20. Komentani T, Yoshii H, Matsuno R (1996) Large-scale production of chiral alcohols with bakers’ yeast. J Mol Catal B Enzym 1:45–52. doi: 10.1016/1381-1177(95)00014-3 CrossRefGoogle Scholar
  21. Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463. doi: 10.1007/s00253-005-0093-8 PubMedCrossRefGoogle Scholar
  22. Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9. doi: 10.1007/s10529-010-0403-9 PubMedCrossRefGoogle Scholar
  23. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719. doi: 10.1007/s00253-008-1808-4 PubMedCrossRefGoogle Scholar
  24. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52. doi: 10.1016/S0167-7799(02)00006-9 PubMedCrossRefGoogle Scholar
  25. Lee G-Y, Jung J-H, Seo D-H, Hansin J, Ha S-J, Cha J, Kim Y-S, Park C-S (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae. Biores Tech 9:9179–9184. doi: 10.1016/j.biortech.2011.06.081 CrossRefGoogle Scholar
  26. Liu X, Zhang X, Zhang Z (2010) Cu, Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett 584:1245–1250. doi: 10.1016/j.febslet.2010.02.039 PubMedCrossRefGoogle Scholar
  27. Löfblom J (2011) Bacterial display in combinatorial protein engineering. Biotechnol J 6:1115–1129. doi: 10.1002/biot.201100129 PubMedCrossRefGoogle Scholar
  28. Mata-Fink J, Kriegsman B, Yu HX, Zhu H, Hanson MC, Irvine DJ, Wittrup KD (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456. doi: 10.1016/j.jmb.2012.11.010 PubMedCrossRefGoogle Scholar
  29. Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113. doi: 10.1007/s00253-008-1761-2 PubMedCrossRefGoogle Scholar
  30. Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79. doi: 10.1186/1475-2859-9-79 PubMedCrossRefGoogle Scholar
  31. Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40:1412–1419. doi: 10.1021/ar700167a PubMedCrossRefGoogle Scholar
  32. Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, Nakatani M, Shimizu S, Ueda M (2012) Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl Microbiol Biotechnol 94:939–948. doi: 10.1007/s00253-012-3876-8 PubMedCrossRefGoogle Scholar
  33. Parthasarathy R, Bajaj J, Boder ET (2005) An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae. Biotechnol Prog 21:1627–1631. doi: 10.1021/bp050279t PubMedCrossRefGoogle Scholar
  34. Persson M, Wehtje E, Adlercreutz P (2002) Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents. ChemBioChem 3:566–571. doi: 10.1002/1439-7633(20020603)3:6<566::AID-CBIC566>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  35. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25. doi: 10.1186/1475-2859-7-25 PubMedCrossRefGoogle Scholar
  36. Puthenveetil S, Liu DS, White KA, Thompson S, Ting AY (2009) Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 131:16430–16438. doi: 10.1021/ja904596f PubMedCrossRefGoogle Scholar
  37. Robertson DE, Steer BA (2004) Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol 8:141–149. doi: 10.1016/j.cbpa.2004.02.010 PubMedCrossRefGoogle Scholar
  38. Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206. doi: 10.1128/MCB.11.8.4196 PubMedGoogle Scholar
  39. Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469–474. doi: 10.1007/s00253-002-1121-6 PubMedCrossRefGoogle Scholar
  40. Servi S (1990) Baker’s yeast as a reagent in organic synthesis. Synthesis 1990(1):1–25. doi: 10.1055/s-1990-26775 CrossRefGoogle Scholar
  41. Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast-arming technology. Anal Sci 25:41–49. doi: 10.2116/analsci.25.41 PubMedCrossRefGoogle Scholar
  42. Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol 70:5037–5040. doi: 10.1128/AEM.70.8.5037-5040.2004 PubMedCrossRefGoogle Scholar
  43. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591. doi: 10.1007/s00253-012-4175-0 PubMedCrossRefGoogle Scholar
  44. Tanaka T, Matsumoto S, Yamada M, Yamada R, Matsuda F, Kondo A (2013) Display of active β-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Appl Microbiol Biotechnol 97:4343–4352. doi: 10.1007/s00253-013-4733-0 PubMedCrossRefGoogle Scholar
  45. Tanino T, Ohno T, Aoki T, Fukuda H, Kondo A (2007) Development of yeast cells displaying Candida antarctica lipase B and their application to ester synthesis reaction. Appl Microbiol Biotechnol 75:1319–1325. doi: 10.1007/s00253-007-0959-z PubMedCrossRefGoogle Scholar
  46. Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772. doi: 10.1128/AEM.00845-09 PubMedCrossRefGoogle Scholar
  47. Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174–180. doi: 10.1016/j.abb.2012.04.022 PubMedCrossRefGoogle Scholar
  48. Tsai SL, Goyal G, Chen W (2010) Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 76:7514–7520. doi: 10.1128/AEM.01777-10 PubMedCrossRefGoogle Scholar
  49. Van der Vaart JM, Caro HP, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110PubMedGoogle Scholar
  50. Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Prot Eng Des Sel 18:337–343. doi: 10.1093/protein/gzi036 CrossRefGoogle Scholar
  51. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686. doi: 10.1007/s002530100718 PubMedCrossRefGoogle Scholar
  52. Watari J, Takata Y, Ogawa M, Sahara H, Koshino M, Onnela ML, Airaksinen U, Jaatinen R, Penttilä M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225. doi: 10.1002/yea.320100208 PubMedCrossRefGoogle Scholar
  53. Yamada R, Taniguchi N, Tanak T, Ogino C, Fukuda H, Kondo A (2011) Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8. doi: 10.1186/1754-6834-4-8 PubMedCrossRefGoogle Scholar
  54. Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115. doi: 10.1007/s00253-010-2487-5 PubMedCrossRefGoogle Scholar
  55. Yang J, Dang H, Lu JR (2012) Improving genetic immobilization of a cellulose on yeast cell surface for bioethanol production using cellulose. J Basic Microbiol 52:1–9. doi: 10.1002/jobm.201100602 CrossRefGoogle Scholar
  56. Yoshida A, Hama S, Nakashima K, Kondo A (2011) Water activity dependence of performance of surface-displayed lipase in yeast cells: a unique water requirement for enzymatic synthetic reaction in organic media. Enzyme Microb Technol 48:334–338. doi: 10.1016/j.enzmictec.2010.12.008 PubMedCrossRefGoogle Scholar
  57. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44. doi: 10.1111/j.1567-1364.2008.00456.x PubMedCrossRefGoogle Scholar
  58. Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812. doi: 10.1007/s00253-002-0961-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departament de Química Orgànica, Facultat de FarmàciaUniversitat de ValènciaBurjassot (València)Spain
  2. 2.Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaValènciaSpain

Personalised recommendations