Applied Microbiology and Biotechnology

, Volume 97, Issue 22, pp 9885–9895 | Cite as

Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

  • Noura Shehab
  • Dong Li
  • Gary L. Amy
  • Bruce E. Logan
  • Pascal E. Saikaly
Environmental biotechnology

Abstract

A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.

Keywords

Air-cathode Microbial community Oxygen intrusion 16S rRNA gene pyrosequencing 

Notes

Acknowledgments

This work was sponsored by a PhD fellowship, a Global Research Partnership-Collaborative Fellows award (GRP-CF-2011-14-S), KAUST Award KUS–I1–003–13 (Bruce E. Logan) and discretionary investigator funds (Pascal E. Saikaly) at King Abdullah University of Science and Technology (KAUST). Special thanks are extended to Hari Ananda Rao for PCR assistance and Mohammed Alarawi and Dr. Shahjahan Ali of the Bioscience Core Laboratory at KAUST for 454 pyrosequencing.

Supplementary material

253_2013_5025_MOESM1_ESM.pdf (93 kb)
ESM 1 (PDF 92 kb)

References

  1. Abrevaya X, Sacco N, Mauas PD, Cortón E (2011) Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles 15(6):633–642PubMedCrossRefGoogle Scholar
  2. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb 69(3):1548–1555CrossRefGoogle Scholar
  3. Bretschger O, Osterstock J, Pinchak W, Ishii S, Nelson K (2010) Microbial fuel cells and microbial ecology: applications in ruminant health and production research. Microb Ecol 59(3):415–427PubMedCrossRefGoogle Scholar
  4. Butler C, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biot 86(5):1399–1408CrossRefGoogle Scholar
  5. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267PubMedCrossRefGoogle Scholar
  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedCrossRefGoogle Scholar
  7. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrogen Energ 35(24):13379–13386CrossRefGoogle Scholar
  8. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958PubMedCrossRefGoogle Scholar
  9. Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8(3):489–494CrossRefGoogle Scholar
  10. Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41(21):7564–7569PubMedCrossRefGoogle Scholar
  11. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biot 82(5):829–836CrossRefGoogle Scholar
  12. Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411(6841):1039–1043PubMedCrossRefGoogle Scholar
  13. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microb 64(6):2232–2236Google Scholar
  14. Daims H, Wagner M (2010) Microbial ecology of activated sludge. Robert Seviour and Per Halkjaer Nielsen (eds). IWA Publishing, London, pp. 259–280Google Scholar
  15. Dewan A, Beyenal H, Lewandowski Z (2008) Scaling up microbial fuel cells. Environ Sci Technol 42(20):7643–7648PubMedCrossRefGoogle Scholar
  16. Feng Y, Wang X, Logan B, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biot 78(5):873–880CrossRefGoogle Scholar
  17. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42(6–7):1387–1396PubMedCrossRefGoogle Scholar
  18. Geelhoed JS, Stams LJM (2011) Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environ Sci Technol 45(2):815–820PubMedCrossRefGoogle Scholar
  19. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA 103(30):11358–11363CrossRefGoogle Scholar
  20. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanal 18(19–20):2009–2015CrossRefGoogle Scholar
  21. He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH (2009) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Techno 43(9):3391–3397CrossRefGoogle Scholar
  22. Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotech Bioch 72(2):286–294CrossRefGoogle Scholar
  23. Jung S, Regan JM (2011) Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl Environ Microb 77(2):564–571CrossRefGoogle Scholar
  24. Kiely P, Call D, Yates M, Regan J, Logan B (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biot 88(1):371–380CrossRefGoogle Scholar
  25. Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011a) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technol 102(1):388–394CrossRefGoogle Scholar
  26. Kiely PD, Rader G, Regan JM, Logan BE (2011b) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresource Technol 102(1):361–366CrossRefGoogle Scholar
  27. Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101(3):698–710PubMedCrossRefGoogle Scholar
  28. Kim Y, Hatzell MC, Hutchinson AJ, Logan BE (2011) Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environmen Sci 4(11):4662–4667CrossRefGoogle Scholar
  29. Larrosa-Guerrero A, Scott K, Katuri K, Godinez C, Head I, Curtis T (2010) Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Appl Microbiol Biot 87(5):1699–1713CrossRefGoogle Scholar
  30. Lee HS, Torres CI, Parameswaran P, Rittmann BE (2009) Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ Sci Technol 43(20):7971–7976PubMedCrossRefGoogle Scholar
  31. Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environmen Sci 5(10):8982–8989CrossRefGoogle Scholar
  32. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285PubMedCrossRefGoogle Scholar
  33. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346PubMedCrossRefGoogle Scholar
  34. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381PubMedCrossRefGoogle Scholar
  35. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–90PubMedCrossRefGoogle Scholar
  36. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66(1):391–409PubMedCrossRefGoogle Scholar
  37. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb 71(12):8228–8235CrossRefGoogle Scholar
  38. Lu L, Xing D, Ren N (2012a) Bioreactor performance and quantitative analysis of methanogenic and bacterial community dynamics in microbial electrolysis cells during large temperature fluctuations. Environ Sci Technol 46(12):6874–6881PubMedCrossRefGoogle Scholar
  39. Lu L, Xing D, Ren N (2012b) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46(7):2425–2434PubMedCrossRefGoogle Scholar
  40. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178(1):26–35PubMedCrossRefGoogle Scholar
  41. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2(4):e00159–11PubMedCrossRefGoogle Scholar
  42. Nam J-Y, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrogen Energ 36(17):10550–10556CrossRefGoogle Scholar
  43. Parameswaran P, Torres CI, Lee HS, Krajmalnik-Brown R, Rittmann BE (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol Bioeng 103(3):513–23PubMedCrossRefGoogle Scholar
  44. Peet RK (1975) Relative diversity indices. Ecology 56(2):496–498CrossRefGoogle Scholar
  45. Porat I, Vishnivetskaya T, Mosher J, Brandt C, Yang Z, Brooks S, Liang L, Drake M, Podar M, Brown S, Palumbo A (2010) Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb Ecol 60(4):784–795PubMedCrossRefGoogle Scholar
  46. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490PubMedCrossRefGoogle Scholar
  47. Qu Y, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microb 78(9):3484–3487CrossRefGoogle Scholar
  48. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298PubMedCrossRefGoogle Scholar
  49. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New YorkGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  51. Sayess RR, Saikaly PE, El-Fadel M, Li D, Semerjian L (2013) Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor. Water Res 47(2):881–894PubMedCrossRefGoogle Scholar
  52. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65(1):12–20PubMedCrossRefGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  54. Tartakovsky B, Manuel MF, Wang H, Guiot SR (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energ 34(2):672–677CrossRefGoogle Scholar
  55. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591PubMedCrossRefGoogle Scholar
  56. Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980PubMedCrossRefGoogle Scholar
  57. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb Applied 73:5261–5267CrossRefGoogle Scholar
  58. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401PubMedCrossRefGoogle Scholar
  59. Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25(1):105–111PubMedCrossRefGoogle Scholar
  60. Yang Q, Feng Y, Logan BE (2012) Using cathode spacers to minimize reactor size in air cathode microbial fuel cells. Bioresource Technol 110:273–277CrossRefGoogle Scholar
  61. Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6(11):2002–2013PubMedCrossRefGoogle Scholar
  62. You S, Zhao Q, Zhang J, Jiang J, Wan C, Du M, Zhao S (2007) A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J Power Sources 173(1):172–177CrossRefGoogle Scholar
  63. Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011a) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Biores Technol 102(1):372–375CrossRefGoogle Scholar
  64. Zhang X, Liang P, Huang X, Sun H, Chen X, Logan BE (2011b) Air-cathode structure optimization in separator-coupled microbial fuel cells. Biosen Bioelectron 30(1):267–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Noura Shehab
    • 1
  • Dong Li
    • 1
  • Gary L. Amy
    • 1
  • Bruce E. Logan
    • 2
  • Pascal E. Saikaly
    • 1
  1. 1.Water Desalination and Reuse Center, Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  2. 2.Department of Civil and Environmental EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations