Applied Microbiology and Biotechnology

, Volume 97, Issue 17, pp 7607–7616 | Cite as

Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1

  • Marius Henkel
  • Anke Schmidberger
  • Christian Kühnert
  • Janina Beuker
  • Thomas Bernard
  • Thomas Schwartz
  • Christoph Syldatk
  • Rudolf Hausmann
Biotechnological products and process engineering

Abstract

Quorum sensing affects the regulation of more than 300 genes in Pseudomonas aeruginosa, influencing growth, biofilm formation, and the biosynthesis of several products. The quorum sensing regulation mechanisms are mostly described in a qualitative character. Particularly, in this study, the kinetics of N-butyryl-homoserine lactone (C4-HSL) and rhamnolipid formation in P. aeruginosa PAO1 were of interest. In this system, the expression of the rhamnolipid biosynthesis genes rhlAB is directly coupled to the C4-HSL concentration via the rhl system. Batch cultivations in a bioreactor with sunflower oil have been used for these investigations. 3-oxo-dodecanoyl-homoserine lactone (3o-C12-HSL) displayed a lipophilic character and accumulated in the hydrophobic phase. Degradation of C4-HSL has been found to occur in the aqueous supernatant of the culture by yet unknown extracellular mechanisms, and production was found to be proportional to biomass concentration rather than by autoinduction mechanisms. Rhamnolipid production rates, as determined experimentally, were shown to correlate linearly with the concentration of autoinducer C4-HSL. These findings were used to derive a simple model, wherein a putative, extracellular protein with C4-HSL degrading activity was assumed (putative C4-HSL acylase). The model is based on data for catalytic efficiency of HSL-acylases extracted from literature (kcat/Km), experimentally determined basal C4-HSL production rates (qC4 - HSLbasal), and two fitted parameters which describe the formation of the putative acylase and is therefore comparatively simple.

Keywords

Rhamnolipid Biosurfactant Modeling Homoserine lactone Quorum sensing Pseudomonas aeruginosa 

Supplementary material

253_2013_5024_MOESM1_ESM.pdf (120 kb)
ESM 1(PDF 120 kb)

References

  1. Abdel-Mawgoud AM, Hausmann R, Lepine F, Müller MM, Deziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberon-Chavez G (ed) Biosurfactants. Microbiology monographs. Springer, Berlin, pp 13–55CrossRefGoogle Scholar
  2. Anguige K, King JR, Ward JP (2006) A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 203(2):240–276. doi:10.1016/j.mbs.2006.05.009 PubMedCrossRefGoogle Scholar
  3. Barbarossa MV, Kuttler C, Fekete A, Rothballer M (2010) A delay model for quorum sensing of Pseudomonas putida. Biosystems 102(2–3):148–156. doi:10.1016/j.biosystems.2010.09.001 PubMedCrossRefGoogle Scholar
  4. Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300PubMedGoogle Scholar
  5. Camara M, Daykin M, Chhabra SR (1998) Detection, purification, and synthesis of N-acylhomoserine lactone quorum sensing signal molecules. Methods Microbiol 27:319–330. doi:10.1016/S0580-9517(08)70293-9 CrossRefGoogle Scholar
  6. Chen F, Chen CC, Riadi L, Ju LK (2004) Modeling rhl quorum sensing regulation on rhamnolipid production by Pseudomonas aeruginosa. Biotechnol Prog 20(5):1325–1331. doi:10.1021/bp049928b PubMedCrossRefGoogle Scholar
  7. Dockery JD, Keener JP (2000) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 00:1–22. doi:10.1006/bulm.2000.0205 Google Scholar
  8. Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of l-rhamnose. German Patent US005658793AGoogle Scholar
  9. Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. Wiley Interdiscip Rev Syst Biol Med 1(1):45–60. doi:10.1002/Wsbm.27 PubMedCrossRefGoogle Scholar
  10. Goryachev AB, Toh DJ, Wee KB, Lee T, Zhang HB, Zhang LH (2005) Transition to quorum sensing in an Agrobacterium population: a stochastic model. PLoS Comput Biol 1(4):265–275. doi:10.1371/journal.pcbi.0010037 CrossRefGoogle Scholar
  11. Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219. doi:10.1016/j.procbio.2012.04.018 CrossRefGoogle Scholar
  12. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. doi:10.1093/Emboj/Cdg366 PubMedCrossRefGoogle Scholar
  13. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologs of Luxr and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343. doi:10.1111/j.1365-2958.1995.mmi_17020333.x PubMedCrossRefGoogle Scholar
  14. Melke P, Sahlin P, Levchenko A, Jonsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6(6) doi:10.1371/journal.pcbi.1000819
  15. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165 PubMedCrossRefGoogle Scholar
  16. Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174. doi:10.1007/s00253-010-2513-7 PubMedCrossRefGoogle Scholar
  17. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181(4):1203–1210PubMedGoogle Scholar
  18. Pesci EC, Iglewski BH (1997) The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132–134. doi:10.1016/S0966-842X(97)01008-1 PubMedCrossRefGoogle Scholar
  19. Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693(1):7–13. doi:10.1016/0021-9673(94)01127-Z PubMedCrossRefGoogle Scholar
  20. Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol doi:10.1007/s00253-013-4891-0
  21. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74(3):1673–1682. doi:10.1128/Iai.74.3.1673-1682.2006 PubMedCrossRefGoogle Scholar
  22. Soberon-Chavez G, Aguirre-Ramirez M, Ordonez L (2005) Is Pseudomonas aeruginosa only "sensing quorum"? Crit Rev Microbiol 31(3):171–182. doi:10.1080/10408410591005138 PubMedCrossRefGoogle Scholar
  23. Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725. doi:10.1007/s00253-005-0150-3 PubMedCrossRefGoogle Scholar
  24. Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur J Lipid Sci Tech 105(10):563–571. doi:10.1002/ejlt.200300816 CrossRefGoogle Scholar
  25. Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. doi:10.1021/Bp034323l PubMedCrossRefGoogle Scholar
  26. Wahjudi M, Papaioannou E, Hendrawati O, van Assen AHG, van Merkerk R, Cool RH, Poelarends GJ, Ouax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–2055. doi:10.1099/Mic.0.043935-0 PubMedCrossRefGoogle Scholar
  27. Wang LH, Weng LX, Dong YH, Zhang LH (2004) Specificity and enzyme kinetics of the quorum quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 279(14):13645–13651. doi:10.1074/jbc.M311194200 PubMedCrossRefGoogle Scholar
  28. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001 CrossRefGoogle Scholar
  29. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191. doi:10.1016/j.mib.2009.01.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marius Henkel
    • 1
  • Anke Schmidberger
    • 2
  • Christian Kühnert
    • 3
  • Janina Beuker
    • 4
  • Thomas Bernard
    • 3
  • Thomas Schwartz
    • 2
  • Christoph Syldatk
    • 1
  • Rudolf Hausmann
    • 4
  1. 1.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Functional Interfaces, Department Microbiology of Natural and Technical InterfacesKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Department Systems for Measurement, Control and Diagnosis (MRD)Fraunhofer Institute of Optronics, System Technologies and Image ExploitationKarlsruheGermany
  4. 4.Institute of Food Science and Biotechnology (150), Section Bioprocess Engineering (150k)University of HohenheimStuttgartGermany

Personalised recommendations