Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 22, pp 9875–9883 | Cite as

Using the variation of anammox bacteria community structures as a bio-indicator for anthropogenic/terrestrial nitrogen inputs in the Pearl River Delta (PRD)

  • Meng Li
  • Huiluo Cao
  • Yiguo Hong
  • Ji-Dong Gu
Environmental biotechnology

Abstract

The variation of anammox bacteria community composition was evaluated in sediments collected from the Pearl River Delta area with an anthropogenic/terrestrial input gradient. Results indicated that the community composition of anammox bacteria shifted from estuarine environment to the South China Sea deep ocean along with the anthropogenic/terrestrial input gradient, where Scalindua genus of anammox bacteria predominated in the area with less anthropogenic/terrestrial influences, such as in the open oceanic area, while genera of Kuenenia/Brocadia anammox bacteria have higher proportions in the area with higher anthropogenic/terrestrial impacts. The canonical correspondence analysis demonstrated that salinity, organic matter contents, and ratio of NH4 + to (NO2 +NO3 ) strongly affected the shifting of anammox bacterial community compositions within the same gradients. The results obtained in this study, together with the similar variation of anammox bacteria community structures in other several estuaries in the world, indicated that anammox bacteria might have a habitat-specific distribution pattern according to their living habits, and their community composition could be served as a bio-indicator to monitor the anthropogenic/terrestrial N inputs in coastal environments.

Keywords

Anammox bacteria Community structure Bio-indicator Anthropogenic/terrestrial nitrogen inputs Pearl River Delta 

Notes

Acknowledgments

This research was supported by a PhD studentship (M.L.), Environmental and Conservation Fund grant no. 15/2011(J-DG), South China Sea Open Cruise by R/V Shiyan 3, and South China Sea Institute of Oceanology, CAS. We thank Jessie Lai for general laboratory support at The University of Hong Kong during this study.

Supplementary material

253_2013_4990_MOESM1_ESM.doc (105 kb)
ESM 1 (DOC 105 kb)

References

  1. Amano T, Yoshinaga I, Yamagishi T, Chu VT, Pham TT, Ueda S, Kato K, Sako Y, Suwa Y (2011) Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove forest and shrimp ponds, Haiphong, Vietnam. Microbes Environ 26(1):1–6PubMedCrossRefGoogle Scholar
  2. Cao HL, Li M, Dang HY, Gu JD (2011) Responses of aerobic and anaerobic ammonia/ammonium-oxidizing microorganisms to anthropogenic pollution in coastal marine environments. Method Enzymol 496:35–62CrossRefGoogle Scholar
  3. Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao SJ (2008) Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences 5(5):1227–1244CrossRefGoogle Scholar
  4. Dale OR, Tobias CR, Song BK (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11(5):1194–1207PubMedCrossRefGoogle Scholar
  5. Dang HY, Chen RP, Wang L, Guo LZ, Chen PP, Tang ZW, Tian F, Li SZ, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microb 76(21):7036–7047CrossRefGoogle Scholar
  6. Dong LF, Smith CJ, Papaspyrou S, Stott A, Osborn AM, Nedwell DB (2009) Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom). Appl Environ Microb 75(10):3171–3179CrossRefGoogle Scholar
  7. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892PubMedCrossRefGoogle Scholar
  8. Hong YG, Li M, Cao HL, Gu JD (2011) Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microb Ecol 62(1):36–47PubMedCrossRefGoogle Scholar
  9. Jetten MSM, Cirpus I, Kartal B, van Niftrik L, van de Pas-Schoonen KT, Sliekers O, Haaijer S, van der Star W, Schmid M, van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Kuenen JG, den Camp HO, Strous M (2005) 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans 33:119–123PubMedCrossRefGoogle Scholar
  10. Jetten MSM, van Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol 44(2–3):65–84Google Scholar
  11. Li M, Hong YG, Klotz MG, Gu JD (2010) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol 86(2):781–790PubMedCrossRefGoogle Scholar
  12. Li M, Cao HL, Hong YG, Gu JD (2011a) Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po nature reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ 26(1):15–22PubMedCrossRefGoogle Scholar
  13. Li M, Hong YG, Cao HL, Gu JD (2011b) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20(8):1780–1790PubMedCrossRefGoogle Scholar
  14. Li M, Hong Y, Cao H, Gu JD (2013a) Community structures and distribution of anaerobic ammonium oxidizing and nirS-encoding nitrite-reducing bacteria in surface sediments of the South China Sea. Microb Ecol doi: 10.1007/s00248-012-0175-y
  15. Li M, Hong Y, Cao H, Klotz MG, Gu JD (2013b) Diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface sediments of the South China Sea. Geobiology 11(2):170–179PubMedCrossRefGoogle Scholar
  16. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16(3):177–183CrossRefGoogle Scholar
  17. Nicholls JC, Trimmer M (2009) Widespread occurrence of the anammox reaction in estuarine sediments. Aquat Microb Ecol 55(2):105–113CrossRefGoogle Scholar
  18. Oshiki M, Shimokawa M, Fujii N, Satohl H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia sinica'. Microbiology 157:1706–1713PubMedCrossRefGoogle Scholar
  19. Rich JJ, Dale OR, Song B, Ward BB (2008) Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microb Ecol 55(2):311–320PubMedCrossRefGoogle Scholar
  20. Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquat Microb Ecol 36(3):293–304CrossRefGoogle Scholar
  21. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microb 71(3):1501–1506CrossRefGoogle Scholar
  22. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJMO, Jetten MSM (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9(6):1476–1484PubMedCrossRefGoogle Scholar
  23. Shen PP, Zhou H, Gu JD (2010) Patterns of polychaete communities in relation to environmental perturbations in a subtropical wetland of Hong Kong. J Mar Biol Assoc UK 90(5):923–932CrossRefGoogle Scholar
  24. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCrossRefGoogle Scholar
  25. Vandegraaf AA, Mulder A, Debruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microb 61(4):1246–1251Google Scholar
  26. Wang S, Zhu G, Peng Y, Jetten MS, Yin C (2012) Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environ Sci Technol 46(16):8834–8842PubMedCrossRefGoogle Scholar
  27. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10(11):3106–3119PubMedCrossRefGoogle Scholar
  28. Yin K, Harrison PJ (2007) Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters. Mar Pollut Bull 54(6):646–656PubMedCrossRefGoogle Scholar
  29. Yin KD, Qian PY, Wu MCS, Chen JC, Huang LM, Song XY, Jian WJ (2001) Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Mar Ecol Prog Ser 221:17–28CrossRefGoogle Scholar
  30. Yin KD, Zhang JL, Qian PY, Jian WJ, Huang LM, Chen JF, Wu MCS (2004) Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. Cont Shelf Res 24(16):1909–1923CrossRefGoogle Scholar
  31. Zhang J, Yu ZG, Wang JT, Ren JL, Chen HT, Xiong H, Dong LX, Xu WY (1999) The subtropical Zhujiang (Pearl River) estuary: nutrient, trace species and their relationship to photosynthesis. Estuar Coast Shelf Sci 49(3):385–400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of Hong KongHong KongPeople’s Republic of China
  2. 2.Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of OceanographyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  3. 3.The Swire Institute of Marine ScienceThe University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations