Advertisement

Applied Microbiology and Biotechnology

, Volume 98, Issue 3, pp 1301–1307 | Cite as

Azoarcus taiwanensis sp. nov., a denitrifying species isolated from a hot spring

  • Duu-Jong Lee
  • Biing-Teo Wong
  • Sunil S. Adav
Environmental biotechnology

Abstract

The strain NSC3T, a novel, facultative, chemolithotrophic, denitrifying, alkaliphilic, sulfide-oxidizing bacterium isolated from a hot spring in Yang-Ming Mountain, Taiwan, was Gram negative, rod shaped, and motile by single polar flagella and grew facultatively by adopting a denitrifying metabolism. The 16S rRNA sequence analysis revealed that strain NSC3T belongs to beta subclass of the Proteobacteria and most closely related to Azoarcus evansii KB740T (95.44 %), Azoarcus toluvorans Td-21T (95.21 %), Azoarcus tolulyticus Tol-4T (95.08 %), and Azoarcus toluclasticus MF63T (94.94 %). The phylogenetic analyses based on 16S rRNA gene sequences indicated that the strain NSC3T formed a distinct lineage in the Betaproteobacteria and that it exhibited the highest level of sequence similarity with species of the genera Azoarcus (95.28–93.13 %). The major fatty acids of the type strain were C16:0 (26.9 %), C16:1w7c (28.9 %), C18:0 (9.6 %), and C18:1w7c/w6c (29.9 %). The DNA G+C content of genomic DNA was 63.7 mol%. On the basis of the 16S rRNA sequence similarity, phenotypic and genotypic characteristics, and chemotaxonomic data, the strain NSC3T could be differentiated from other species of the genus Azoarcus. Therefore, strain NSC3T (equal to BCRC 80111T and DSM 24109T) is proposed as a novel species in genus Azoarcus, for which the name Azoarcus taiwanensis sp. nov. is proposed. The strain NSC3T is deposited in Bioresource Collection and Research Center, Taiwan, under the reference number BCRC 80111T, and German Collection of Microorganisms and Cell Cultures, Germany (DSMZ), with DSM 24109T.

Keywords

Sulfide oxidizing Facultative Denitrification Isolation Identification 

Supplementary material

253_2013_4976_MOESM1_ESM.docx (223 kb)
ESM 1 (DOCX 222 kb)

References

  1. Anders HJ, Kaetzke A, Kampfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333PubMedCrossRefGoogle Scholar
  2. APHA (1998) Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association. Washington DC, USAGoogle Scholar
  3. Chen C, Ren NQ, Wang AJ, Yu ZG, Lee DJ (2008a) Microbial community of granules in EGSB reactor for simultaneous biological removal of sulfate, nitrate, and COD. Appl Microbiol Biotechnol 79:1071–1077PubMedCrossRefGoogle Scholar
  4. Chen C, Ren NQ, Wang AJ, Yu ZG, Lee DJ (2008b) Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Appl Microbiol Biotechnol 78:1057–1063PubMedCrossRefGoogle Scholar
  5. Chen C, Wang AJ, Ren NQ, Kan HJ, Lee DJ (2008c) Biological breakdown of denitrifying sulfide removal process in high-rate expanded granular bed reactor. Appl Microbiol Biotechnol 81:765–770PubMedCrossRefGoogle Scholar
  6. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  7. Gupta AB (1997) Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzym Microb Technol 21:589–595CrossRefGoogle Scholar
  8. Kampfer P, Buczolits S, Albrecht A, Busse HJ, Stackebrandt E (2003) Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896PubMedCrossRefGoogle Scholar
  9. Kelly DP, Chambers LA, Thudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixtures with thiosulfate and tetrathionate. Anal Chem 41:898–901CrossRefGoogle Scholar
  10. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163Google Scholar
  11. Lee DJ, Pan XL, Wang AJ, Ho KL (2013) Facultative autotrophic denitrifiers in denitrifying sulfide removal granules. Bioresour Technol 132:356–360PubMedCrossRefGoogle Scholar
  12. Manaia CM, Nunes OC, Nogales B (2003) Caenibacterium thermophilum gen. nov., sp. nov., isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382PubMedCrossRefGoogle Scholar
  13. Moest RR (1975) Hydrogen sulfide determination by the methylene blue method. Anal Chem 47:1204–1205Google Scholar
  14. Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434PubMedCrossRefGoogle Scholar
  15. Pfennig N, Lippert KD (1966) Uber Das Vitamin B12-Bedurfnis Phototropher Schwefelbakterien. Arch Microbiol 55:245–256Google Scholar
  16. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584CrossRefGoogle Scholar
  17. Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855Google Scholar
  18. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–655Google Scholar
  19. Song B, Haggblom MM, Zhou JZ, Tiedje JM, Palleroni NJ (1999) Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 49:1129–1140PubMedCrossRefGoogle Scholar
  20. Sorokin DY (2003) Oxidation of inorganic sulfur compounds by obligatively organotrophic bacteria. Microbiology 72:641–653CrossRefGoogle Scholar
  21. Sorokin DY, Lysenko AM, Mityushina LL (1996) Isolation and characterization of alkaliphilic chemoorganoheterotrophic bacteria oxidizing reduced inorganic sulfur compounds to tetrathionate. Microbiology 65:326–338Google Scholar
  22. Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123PubMedCrossRefGoogle Scholar
  23. Springer N, Ludwig W, Philipp B, Schink B (1998) Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 48:953–956PubMedCrossRefGoogle Scholar
  24. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  25. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  26. Zecca L, Rosati M, Renella R, Galimberti M, Ambrosini A, Fariello RG (1998) Nitrite and nitrate levels in cerebrospinal fluid of normal subjects. J Neural Transm 105: 627–633Google Scholar
  27. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 45:500–506PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations