Applied Microbiology and Biotechnology

, Volume 97, Issue 17, pp 7529–7541 | Cite as

Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A

  • Mario Vera
  • Axel Schippers
  • Wolfgang SandEmail author


Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.


Bioleaching Acidithiobacillus Metal sulfides Extracellular polymeric substances 



The authors want to thank Andrzej Kuklinski and Sören Bellenberg for providing KPFM-AFM and CLSM images, respectively.


  1. Acuña J, Rojas J, Amaro AM, Toledo H, Jerez CA (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 75:37–42PubMedCrossRefGoogle Scholar
  2. Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182PubMedCrossRefGoogle Scholar
  3. Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2010) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122PubMedCrossRefGoogle Scholar
  4. Andrews GF (1988) The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces. Biotechnol Bioeng 31:378–381PubMedCrossRefGoogle Scholar
  5. Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V (1999) Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65:4781–4787PubMedGoogle Scholar
  6. Bagdigian RM, Myerson AS (1986) The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28:467–479PubMedCrossRefGoogle Scholar
  7. Balci N, Shanks WC III, Mayer B, Mandernack KW (2007) Oxygen and sulfur isotope systematics of sulfate produced during bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta 71:3796–3811CrossRefGoogle Scholar
  8. Balci N, Mayer B, Shanks WC III, Mandernack KW (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351CrossRefGoogle Scholar
  9. Bellenberg S, Leon-Morales CF, Sand W, Vera M (2012) Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans. Hydrometallurgy 129–130:82–89CrossRefGoogle Scholar
  10. Bevilaqua D, Leite ALLC, Garcia O Jr, Tuovinen OH (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochem 38:587–592CrossRefGoogle Scholar
  11. Blake RC 2nd, Griff MN (2012) In situ spectroscopy on intact Leptospirillum ferrooxidans reveals that reduced cytochrome 579 is an obligatory intermediate in the aerobic iron respiratory chain. Front Microbiol 3:136–146PubMedCrossRefGoogle Scholar
  12. Blake RC, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60:3349–3357PubMedGoogle Scholar
  13. Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971PubMedCrossRefGoogle Scholar
  14. Bonnefoy V, Holmes DS (2011) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611PubMedCrossRefGoogle Scholar
  15. Boon M, Heijnen JJ, Hansford GS (1998) The mechanism and kinetics of bioleaching sulphide minerals. Miner Process Extr Metall Rev 19:107–115CrossRefGoogle Scholar
  16. Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic, BostonGoogle Scholar
  17. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604CrossRefGoogle Scholar
  18. Bruscella P, Cassagnaud L, Ratouchniak J, Brasseur G, Lojou E, Amils R, Bonnefoy V (2005) The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology 151:1421–1431PubMedCrossRefGoogle Scholar
  19. Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283:25803–25811PubMedCrossRefGoogle Scholar
  20. Castelle C, Ilbert M, Infossi P, Leroy G, Giudici-Orticoni MT (2010) An unconventional copper protein required for cytochrome c oxidase respiratory function under extreme acidic conditions. J Biol Chem 285:21519–21525PubMedCrossRefGoogle Scholar
  21. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790CrossRefGoogle Scholar
  22. Cox JC, Boxer DH (1978) The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J 174:497–502PubMedGoogle Scholar
  23. Crundwell FK (1988) The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21:155–190CrossRefGoogle Scholar
  24. Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172CrossRefGoogle Scholar
  25. Dispirito AA, Dugan PR, Tuovinen OH (1983) Sorption of Thiobacillus ferrooxidans to particulate material. Biotechnol Bioeng 25:1163–1168PubMedCrossRefGoogle Scholar
  26. Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631PubMedCrossRefGoogle Scholar
  27. Druschel GK (2002) Sulfur biogeochemistry: kinetics of intermediate sulfur species reactions in the environment. PhD thesis, University of WisconsinGoogle Scholar
  28. Druschel G, Borda M (2006) Comment on “Pyrite dissolution in acidic media” by M. Descostes, P. Vitorge, and C. Beaucaire. Geochim Cosmochim Acta 70:5246–5250CrossRefGoogle Scholar
  29. du Plessis CA, Slabbert W, Hallberg KB, Johnson DB (2011) Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109:221–229CrossRefGoogle Scholar
  30. Dutrizac JE, MacDonald RJC (1974) Ferric ion as a leaching medium. Miner Sci Eng 6:59–100Google Scholar
  31. Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J (1998) Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Appl Environ Microbiol 64:2937–2942PubMedGoogle Scholar
  32. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedCrossRefGoogle Scholar
  33. Edwards KJ, Hu B, Hamers RJ, Banfield JF (2001) A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol Ecol 34:197–206PubMedCrossRefGoogle Scholar
  34. Ehrlich HL (2009) Geomicrobiology, 5th edn. CRC, Boca RatonGoogle Scholar
  35. Evangelou VPB (1995) Pyrite oxidation and its control. CRC, Boca RatonGoogle Scholar
  36. Farah C, Vera M, Morin D, Haras D, Jerez CA, Guiliani N (2005) Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71:7033–7040PubMedCrossRefGoogle Scholar
  37. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedGoogle Scholar
  38. Fowler TA, Crundwell FK (1998) Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl Environ Microbiol 64:3570–3575PubMedGoogle Scholar
  39. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993PubMedGoogle Scholar
  40. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747PubMedGoogle Scholar
  41. Gehrke T, Hallmann R, Kinzler K, Sand W (2001) The EPS of Acidithiobacillus ferrooxidans—a model for structure–function relationships of attached bacteria and their physiology. Water Sci Technol 43:159–167PubMedGoogle Scholar
  42. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50(Pt 3):997–1006PubMedCrossRefGoogle Scholar
  43. González A, Bellenberg S, Mamani S, Ruiz L, Echeverría A, Soulère L, Doutheau A, Demergasso C, Sand W, Queneau Y, Vera M, Guiliani N (2012) AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 97:3729–3737PubMedCrossRefGoogle Scholar
  44. Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 39:25–48CrossRefGoogle Scholar
  45. Hallberg KB, Gonzalez-Toril E, Johnson DB (2009) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19PubMedCrossRefGoogle Scholar
  46. Hallberg KB, Grail BM, du Plessis CA, Johnson DB (2011a) Reductive dissolution of ferric iron minerals: a new approach for bio-processing nickel laterites. Miner Eng 24:620–624CrossRefGoogle Scholar
  47. Hallberg KB, Hedrich S, Johnson DB (2011b) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15:271–279PubMedCrossRefGoogle Scholar
  48. Hallmann R, Friedrich A, Koops HP, Pommerening-Röser A, Rohde K, Zenneck C, Sand W (1993) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physiochemical factors influence microbial metal leaching. Geomicrobiol J 10:193–206CrossRefGoogle Scholar
  49. Hansford GS (1997) Recent developments in modelling the kinetics of bioleaching sulphide minerals. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin, pp 153–175Google Scholar
  50. Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulphide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254CrossRefGoogle Scholar
  51. Harrison AP Jr (1982) Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch Microbiol 131:68–76CrossRefGoogle Scholar
  52. Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564PubMedCrossRefGoogle Scholar
  53. Hiraishi A, Nagashima KV, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398PubMedCrossRefGoogle Scholar
  54. Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546PubMedCrossRefGoogle Scholar
  55. Hiraishi A, Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47:161–180PubMedCrossRefGoogle Scholar
  56. Ingledew WJ, Cobley JG (1980) A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim Biophys Acta 590:141–158PubMedCrossRefGoogle Scholar
  57. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14PubMedCrossRefGoogle Scholar
  58. Johnson DB (2011) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81:2–12CrossRefGoogle Scholar
  59. Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96PubMedCrossRefGoogle Scholar
  60. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedCrossRefGoogle Scholar
  61. Korehi H, Blöthe M, Sitnikova MA, Dold B, Schippers A (2013) Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Environ Sci Technol 47:2189–2196CrossRefGoogle Scholar
  62. Liljeqvist M, Valdes J, Holmes DS, Dopson M (2011) Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. J Bacteriol 193:4304–4305PubMedCrossRefGoogle Scholar
  63. Liljeqvist M, Rzhepishevska OI, Dopson M (2012) Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Appl Environ Microbiol 79:951–957PubMedCrossRefGoogle Scholar
  64. Little B, Ray B, Pope R, Franklin M, White DC (2000) Spatial and temporal relationships between localised corrosion and bacterial activity on iron-containing substrata. In: Sequeira CAC (ed) Microbial corrosion. European Federation of Corrosion Publications, no. 29. Institute of Materials, London, pp 21–35Google Scholar
  65. Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497CrossRefGoogle Scholar
  66. Luther GW III (1987) Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193–3199CrossRefGoogle Scholar
  67. McGuire MM, Edwards KJ, Banfield JF, Hamers RJ (2001) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim Cosmochim Acta 65:1243–1258CrossRefGoogle Scholar
  68. Medvedev D, Stuchebrukhov A (2001) DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH to DNA thymine dimer. J Theor Biol 210:237–248PubMedCrossRefGoogle Scholar
  69. Meruane G, Salhe C, Wiertz J, Vargas T (2002) Novel electrochemical–enzymatic model which quantifies the effect of the solution E h on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng 80:280–288PubMedCrossRefGoogle Scholar
  70. Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris. Acta Biotechnol 22:391–399CrossRefGoogle Scholar
  71. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571CrossRefGoogle Scholar
  72. Mustin C, de Donato P, Berthelin J, Marion P (1993) Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans. FEMS Microbiol Rev 11:71–78CrossRefGoogle Scholar
  73. NIST (2004) NIST critical selected stability constants of metal complexes database. NIST standard reference database 46, ver 8.0. National Institute of Standards and Technology, Gaithersburg, MD.
  74. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Hossner LR, Kittrick JA, Fanning DF (eds) Acid sulfate weathering, pedogeochemistry and relationship to manipulation of soil minerals. Soil Science Society of America Press, Madison, WI, pp 37–55Google Scholar
  75. Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the International Symposium. Science and Technology Letters, Kew, pp 43–59Google Scholar
  76. Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76PubMedCrossRefGoogle Scholar
  77. Ohmura N, Kitamura K, Saiki H (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59:4044–4050PubMedGoogle Scholar
  78. Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe(3+), S(0), and H(2) in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087PubMedCrossRefGoogle Scholar
  79. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257PubMedCrossRefGoogle Scholar
  80. Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848PubMedCrossRefGoogle Scholar
  81. Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583PubMedCrossRefGoogle Scholar
  82. Osorio H, Mangold S, Denis Y, Nancucheo I, Esparza M, Johnson DB, Bonnefoy V, Dopson M, Holmes DS (2013) Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79:2172–2181PubMedCrossRefGoogle Scholar
  83. Pronk JT, de Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230PubMedGoogle Scholar
  84. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394PubMedCrossRefGoogle Scholar
  85. Rawlings DE (1997) Biomining: theory, microbes and industrial processes. Springer, BerlinGoogle Scholar
  86. Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145(Pt 1):5–13PubMedCrossRefGoogle Scholar
  87. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91PubMedCrossRefGoogle Scholar
  88. Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66PubMedCrossRefGoogle Scholar
  89. Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRefGoogle Scholar
  90. Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405CrossRefGoogle Scholar
  91. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248PubMedCrossRefGoogle Scholar
  92. Rohwerder T, Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699–1710PubMedCrossRefGoogle Scholar
  93. Rossi G (1990) Biohydrometallurgy. McGraw-Hill, HamburgGoogle Scholar
  94. Rossi G (1993) Biodepyritization of coal: achievements and problems. Fuel 72:1581–1592CrossRefGoogle Scholar
  95. Ruiz L, Valenzuela S, Castro M, Gonzalez A, Frezza M, Soulère L, Rohwerder T, Queneau Y, Doutheau A, Sand W, Jerez CA, Guiliani N (2008) AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy 94:133–137CrossRefGoogle Scholar
  96. Ruiz LM, Castro M, Barriga A, Jerez CA, Guiliani N (2011) The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals. Lett Appl Microbiol 54:133–139PubMedCrossRefGoogle Scholar
  97. Sampson MI, Phillips CV, Blake RC II (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Min Eng 13:373–389CrossRefGoogle Scholar
  98. Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92PubMedGoogle Scholar
  99. Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966CrossRefGoogle Scholar
  100. Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175CrossRefGoogle Scholar
  101. Sand W, Jozsa PG, Kovacs ZM, Săsăran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92:205–211CrossRefGoogle Scholar
  102. Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sánchez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51:115–129CrossRefGoogle Scholar
  103. Schippers A, Jozsa P, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431PubMedGoogle Scholar
  104. Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110CrossRefGoogle Scholar
  105. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321PubMedGoogle Scholar
  106. Schippers A, Jozsa PG, Kovacs ZM, Jelea M, Sand W (2001) Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. Waste Manage 21:139–146CrossRefGoogle Scholar
  107. Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry—past and present. Special Paper 379. Geological Society of America, Boulder, CO, pp 49–62CrossRefGoogle Scholar
  108. Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350CrossRefGoogle Scholar
  109. Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522PubMedCrossRefGoogle Scholar
  110. Shrihari RK, Modak JM, Kumar R, Gandhi KS (1995) Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy 38:175–187CrossRefGoogle Scholar
  111. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123PubMedCrossRefGoogle Scholar
  112. Singer SW, Erickson BK, VerBerkmoes NC, Hwang M, Shah MB, Hettich RL, Banfield JF, Thelen MP (2010) Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities. ISME J 4:1398–1409PubMedCrossRefGoogle Scholar
  113. Smart RSC, Jasieniak M, Prince KE, Skinner WM (2000) SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces. Miner Eng 13:857–870CrossRefGoogle Scholar
  114. Smith JA, Lovley DR, Tremblay PL (2012) Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907PubMedCrossRefGoogle Scholar
  115. Solari JA, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloid Surf 69:159–166CrossRefGoogle Scholar
  116. Taylor ES, Lower SK (2008) Thickness and surface density of extracellular polymers on Acidithiobacillus ferrooxidans. Appl Environ Microbiol 74:309–311PubMedCrossRefGoogle Scholar
  117. Thomas JE, Jones CF, Skinner WM, Smart RSC (1998) The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions. Geochim Cosmochim Acta 62:1555–1565CrossRefGoogle Scholar
  118. Thomas JE, Skinner WM, Smart RSC (2001) A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution. Geochim Cosmochim Acta 65:1–12CrossRefGoogle Scholar
  119. Thurston RS, Mandernack KW, Shanks WC III (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: oxygen and sulfur isotope fractionation. Chem Geol 269:252–261CrossRefGoogle Scholar
  120. Tributsch H, Bennett JC (1981a) Semiconductor–electrochemical aspects of bacterial leaching. 1. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31:565–577CrossRefGoogle Scholar
  121. Tributsch H, Bennett JC (1981b) Semiconductor–electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31:627–635CrossRefGoogle Scholar
  122. Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59:177–185CrossRefGoogle Scholar
  123. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286PubMedGoogle Scholar
  124. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, CambridgeGoogle Scholar
  125. Vera M, Guiliani N, Jerez CA (2003) Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71:125–132CrossRefGoogle Scholar
  126. Vera M, Pagliai F, Guiliani N, Jerez CA (2008) The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates. Appl Environ Microbiol 74:1829–1835PubMedCrossRefGoogle Scholar
  127. Vera M, Krok B, Bellenberg S, Sand W, Poetsch A (2013) Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans on pyrite. Proteomics 13:133–1144CrossRefGoogle Scholar
  128. Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determing step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454CrossRefGoogle Scholar
  129. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconductiong minerals. Am Mineral 85:543–556Google Scholar
  130. Yarzabal A, Brasseur G, Bonnefoy V (2002a) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209:189–195Google Scholar
  131. Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002b) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317CrossRefGoogle Scholar
  132. Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123PubMedCrossRefGoogle Scholar
  133. Zammit CM, Mangold S, Vr J, Mutch LA, Watling HR, Dopson M, Watkin EL (2011) Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93:319–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biofilm Centre, Aquatische BiotechnologieUniversität Duisburg-EssenEssenGermany
  2. 2.Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)HannoverGermany

Personalised recommendations