Applied Microbiology and Biotechnology

, Volume 97, Issue 13, pp 5669–5679 | Cite as

Poplar genetic engineering: promoting desirable wood characteristics and pest resistance

  • A. PolleEmail author
  • D. Janz
  • T. Teichmann
  • V. Lipka


Worldwide biomass demand for industrial applications, especially for production of biofuels, is increasing. Extended cultivation of fast growing trees such as poplars may contribute to satisfy the need for renewable resources. However, lignin, which constitutes about 20–30 % of woody biomass, renders poplar wood recalcitrant to saccharification. Genetic engineering of the enzymes of the lignification pathway has resulted in drastic decreases in lignin and greatly improved the carbohydrate yield for ethanol fermentation. While uncovering key enzymes for lignification facilitated rapid biotechnological progress, knowledge on field performance of low-lignin poplars is still lagging behind. The major biotic damage is caused by poplar rust fungi (Melampsora larici-populina), whose defense responses involve lignification and production of phenolic compounds. Therefore, manipulation of the phenylpropanoid pathway may be critical and should be tightly linked with new strategies for improved poplar rust tolerance. Emerging novel concepts for wood improvement are discussed.


Biotechnology Defense Lignin Populus Rust 



Work in the laboratories of the authors is funded by the European Communities in the seventh framework (WATBIO), the German Federal Government (BMBF through the program BEST), the Niedersächsisches Ministerium für Wissenschaft und Kultur (program KLIFF) and the Deutsche Forschungsgemeinschaft (DFG), whose support we gratefully acknowledge.


  1. Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421–423. doi: 10.1016/S0968-0004(00)01620-0 CrossRefGoogle Scholar
  2. Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992. doi: 10.1093/treephys/27.7.985 CrossRefGoogle Scholar
  3. Awad H, Herbette S, Brunel N, Tixier A, Pilate G, Cochard H, Badel E (2012) No trade-off between hydraulic and mechanical properties in several transgenic poplars modified for lignins metabolism. Environ Exp Bot 77:185–195. doi: 10.1016/j.envexpbot.2011.11.023 CrossRefGoogle Scholar
  4. Azaiez A, Boyle B, Levee V, Seguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22:190-200. doi: 10.1094/MPMI-22-2-0190 Google Scholar
  5. Baucher M (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350. doi: 10.1080/10409230390242443 CrossRefGoogle Scholar
  6. Baucher M, Chabbert B, Pilate G, VanDoorsselaere J, Tollier MT, PetitConil M, Cornu D, Monties B, VanMontagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490Google Scholar
  7. Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Janz D, Polle A, Schnitzler J-P (2012) Isoprene emission-free poplars—a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194:70–82. doi: 10.1111/j.1469-8137.2011.03979.x CrossRefGoogle Scholar
  8. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 CrossRefGoogle Scholar
  9. Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Op Biotech 24:336–343. doi: 10.1016/j.copbio.2012.11.004 CrossRefGoogle Scholar
  10. Bose SK, Francis RC, Govender M, Bush T, Spark A (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Biores Tech 100:1628–1633. doi: 10.1016/j.biortech.2008.08.046 CrossRefGoogle Scholar
  11. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 25:759–761. doi: 10.1038/nbt1316 CrossRefGoogle Scholar
  12. Chen S, Polle A (2009) Salinity tolerance of Populus. Plant Biol 12:317–333. doi: 10.1111/j.1438-8677.2009.00301.x CrossRefGoogle Scholar
  13. Coleman HD, Park J-Y, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci 105:4501–4506. doi: 10.1073/pnas.0706537105 CrossRefGoogle Scholar
  14. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci 106:13118–13123. doi: 10.1073/pnas.0900188106 CrossRefGoogle Scholar
  15. Danielsen L, Lohaus G, Sirrenberg A, Karlovsky P, Bastien C, Pilate G, Polle A (2013) Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis. PLoS One 8:e59207. doi: 10.1371/journal.pone.0059207 CrossRefGoogle Scholar
  16. Danielsen L, Thürmer A, Meinicke P, Buée M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948. doi: 10.1002/ece3.305 CrossRefGoogle Scholar
  17. Demirbaş A (2001) Relationships between lignin contents and heating values of biomass. Energy Conv Manag 42:183–188. doi: 10.1016/S0196-8904(00)00050-9 CrossRefGoogle Scholar
  18. Dickmann DI (2001) An overview of the genus Populus. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America, part A. NRC Research, Ottawa, pp 1–42Google Scholar
  19. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Gen 11:539–548. doi: 10.1038/nrg2812 CrossRefGoogle Scholar
  20. Donnelly JR (1974) Seasonal-changes in photosynthate transport within elongating shoots of Populus grandidentata. Can J Bot 52:2547–2559CrossRefGoogle Scholar
  21. Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, Kues U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov AA, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan GA, Henrissat B, Van de Peer Y, Rouze P, Ellis JG, Dodds PN, Schein JE, Zhong S, Hamelin RC, Grigoriev IV, Szabo LJ, Martin F (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci 108:9166–9171. doi: 10.1073/pnas.1019315108 CrossRefGoogle Scholar
  22. Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research, Ottawa, pp 7–32Google Scholar
  23. Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Çetinkol ÖP, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loqué D (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotech J 10:609–620. doi: 10.1111/j.1467-7652.2012.00692.x CrossRefGoogle Scholar
  24. Euring D, Löfke C, Teichmann T, Polle A (2012) Nitrogen fertilization has differential effects on N allocation and lignin in two Populus species with contrasting ecology. Trees 26:1933–1942. doi: 10.1007/s00468-012-0761-0 CrossRefGoogle Scholar
  25. FAO (2009) State of the world’s forests. Accessed 8 Feb 2013
  26. Fischer U, Polle A (2010) Populus responses to abiotic stress. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus. Springer Verlag, Berlin, pp 225–247Google Scholar
  27. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234. doi: 10.1046/j.1365-313x.2000.00727.x CrossRefGoogle Scholar
  28. Frey P, Gerard P, Feau N, Husson C, Pinon J (2005) Variability and population biology of Melampsora rusts on poplars. In: Pei M, McCracken AR (eds) Rust diseases on willow and poplar. CAB International, Wallingford, pp 63–72CrossRefGoogle Scholar
  29. Germain H, Séguin A (2011) Innate immunity: has poplar made its BED? New Phytol 189:678–687. doi: 10.1111/j.1469-8137.2010.03544.x CrossRefGoogle Scholar
  30. Hacquard S, Joly DL, Lin Y-C, Tisserant E, Feau N, Delaruelle C, Legué V, Kohler A, Tanguay P, Petre B, Frey P, Van de Peer Y, Rouzé P, Martin F, Hamelin RC, Duplessis S (2012) A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (Poplar Leaf Rust). Mol Plant Microbe Interact 25:279–293. doi: 10.1094/MPMI-09-11-0238 CrossRefGoogle Scholar
  31. Hacquard S, Petre B, Frey P, Hecker A, Rouhier N, Duplessis S (2011) The poplar-poplar rust interaction: insights from genomics and transcriptomics. J Path. doi: 10.4061/2011/716041 Google Scholar
  32. Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkins DW (2006) Ecological impacts of trees with modified lignin. Tree Genet Gen 3:101–110. doi: 10.1007/s11295-006-0060-2 CrossRefGoogle Scholar
  33. Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Scarascia Mugnozza G (2012) Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 17:64–72. doi: 10.1016/j.tplants.2011.11.005 CrossRefGoogle Scholar
  34. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi: 10.1126/science.1137016 CrossRefGoogle Scholar
  35. Hjältén J, Lindau A, Wennström A, Blomberg P, Witzell J, Hurry V, Ericson L (2007) Unintentional changes of defence traits in GM trees can influence plant–herbivore interactions. Basic Appl Ecol 8:434–443. doi: 10.1016/j.baae.2006.09.001 CrossRefGoogle Scholar
  36. Holeski LM, Vogelzang A, Stanosz G, Lindroth RL (2009) Incidence of Venturia shoot blight in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochem Syst Ecol 37:139–145. doi: 10.1016/j.bse.2009.02.003 CrossRefGoogle Scholar
  37. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotech 17:808–812. doi: 10.1038/11758 CrossRefGoogle Scholar
  38. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agr Food Chem 51:6178–6183. doi: 10.1021/jf034320o CrossRefGoogle Scholar
  39. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173. doi: 10.1186/1471-2229-11-173 CrossRefGoogle Scholar
  40. Iiyama K, Lam T, Stone B (1994) Covalent cross-links in the cell-wall. Plant Physiol 104:315–320Google Scholar
  41. Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler J-P, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of “pressure wood” in two Populus species. New Phytol 194:129–141. doi: 10.1111/j.1469-8137.2011.03975.x CrossRefGoogle Scholar
  42. Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Com Rend Geosci 340:621–628. doi: 10.1016/j.crte.2008.07.002 CrossRefGoogle Scholar
  43. Jia C (2004) Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL. Chin Sci Bull 49:905. doi: 10.1360/03wc0529 Google Scholar
  44. Johnson JD, Kim Y (2005) The role of leaf chemistry in Melampsora medusae infection of hybrid poplar: effects of leaf development and fungicide treatment. Can J For Res 35:763–771. doi: 10.1139/x05-009 CrossRefGoogle Scholar
  45. Joly DL, Feau N, Tanguay P, Hamelin RC (2010) Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 11:422. doi: 10.1186/1471-2164-11-422 CrossRefGoogle Scholar
  46. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 CrossRefGoogle Scholar
  47. Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127. doi: 10.1111/j.1469-8137.2005.01424.x CrossRefGoogle Scholar
  48. Jouanin L (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1374. doi: 10.1104/pp. 123.4.1363 CrossRefGoogle Scholar
  49. Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Nishida K, Kanaya T, Shani Z, Shoseyov O, Hayashi T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol Plant 2:904–909. doi: 10.1093/mp/ssp060 CrossRefGoogle Scholar
  50. Kaku T, Kaida R, Baba K, Hartati S, Sudarmonowati E, Hayashi T (2011) Improvement of fermentable sugar yields of mangium through transgenic overexpression of xyloglucanase. J Wood Sci 57:545–548. doi: 10.1007/s10086-011-1180-3 CrossRefGoogle Scholar
  51. Karp A, Richter GM (2011) Meeting the challenge of food and energy security. J Exp Bot 62:3263–3271. doi: 10.1093/jxb/err099 CrossRefGoogle Scholar
  52. Kleemann F, Fragstein M, Vornam B, Müller A, Leuschner C, Holzschuh A, Tscharntke T, Finkeldey R, Polle A (2011) Relating genetic variation of ecologically important tree traits to associated organisms in full-sib aspen families. Eur J For Res 130:707–716. doi: 10.1007/s10342-010-0460-6 CrossRefGoogle Scholar
  53. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotech 35:377–391. doi: 10.1007/s10295-008-0327-8 CrossRefGoogle Scholar
  54. Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089. doi: 10.1093/pcp/pcp060 CrossRefGoogle Scholar
  55. Legay S, Sivadon P, Blervacq A-S, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786. doi: 10.1111/j.1469-8137.2010.03432.x CrossRefGoogle Scholar
  56. Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K, Lefebvre A, Joseleau J-P, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691. doi: 10.1105/tpc.107.054148 CrossRefGoogle Scholar
  57. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci 100:4939–4944. doi: 10.1073/pnas.0831166100 CrossRefGoogle Scholar
  58. Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581. doi: 10.1111/j.1365-313X.2008.03457.x CrossRefGoogle Scholar
  59. Liu Y, Xu F, Gou J, Al-Haddad J, Telewski FW, Bae H-J, Joshi CP (2012) Importance of two consecutive methionines at the N-terminus of a cellulose synthase (PtdCesA8A) for normal wood cellulose synthesis in aspen. Tree Physiol 32:1403–1412. doi: 10.1093/treephys/tps096 CrossRefGoogle Scholar
  60. Lu J, Zhao H, Wei J, He Y, Shi C, Wang H, Song Y (2004) Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog Nat Sci 14:1060–1063. doi: 10.1080/10020070412331344801 CrossRefGoogle Scholar
  61. Luo Z-B, Langenfeld-Heyser R, Calfapietra C, Polle A (2005) Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees 19:109–118. doi: 10.1007/s00468-004-0369-0 CrossRefGoogle Scholar
  62. Luo Z-B, Polle A (2009) Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biol 15:38–47. doi: 10.1111/j.1365-2486.2008.01768.x CrossRefGoogle Scholar
  63. Maloney VJ, Samuels AL, Mansfield SD (2012) The endo-1,4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol 193:1076–1087. doi: 10.1111/j.1469-8137.2011.03998.x CrossRefGoogle Scholar
  64. Mansfield SD, Kang K-Y, Chapple C (2012) Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194:91–101. doi: 10.1111/j.1469-8137.2011.04031.x CrossRefGoogle Scholar
  65. Mantau U (2010) Is there enough wood for Europe? EUwood—real potential for changes in growth and use of EU forests. Final report. Hamburg, Germany, pp 19–34Google Scholar
  66. Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A, Lindroth AM, Barrés R, Yan J, Strömberg S, De S, Pontén F, Lander ES, Carr SA, Zierath JR, Kullander K, Wadelius C, Lindblad-Toh K, Andersson G, Hjälm G, Andersson L (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 7:e1000256. doi: 10.1371/journal.pbio.1000256 CrossRefGoogle Scholar
  67. Meyermans H (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909. doi: 10.1074/jbc.M006915200 CrossRefGoogle Scholar
  68. Min D, Li Q, Jameel H, Chiang V, Chang H (2012) The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of Black Cottonwood (Populus trichocarpa). Appl Biochem Biotechnol 168:947–955. doi: 10.1007/s12010-012-9833-2 CrossRefGoogle Scholar
  69. Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20:816–831. doi: 10.1094/MPMI-20-7-0816 CrossRefGoogle Scholar
  70. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Tech 96:673–686. doi: 10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  71. Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187. doi: 10.1016/S0014-5793(04)00346-1 CrossRefGoogle Scholar
  72. Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loqué D, Scheller HV (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotech Biofuels 5:84. doi: 10.1186/1754-6834-5-84 CrossRefGoogle Scholar
  73. Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J, Delaruelle C, Martin F, Rouhier N, Kohler A, Duplessis S (2012) RNA-seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLoS One 7:e44408. doi: 10.1371/journal.pone.0044408 CrossRefGoogle Scholar
  74. Pfabel C, Eckhardt K-U, Baum C, Struck C, Frey P, Weih M (2012) Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa × deltoides). Tree Physiol 32:1357–1364. doi: 10.1093/treephys/tps093 CrossRefGoogle Scholar
  75. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotech 20:607–612. doi: 10.1038/nbt0602-607 CrossRefGoogle Scholar
  76. Pinon J, Frey P (2005)In: Pei M, McCracken AR (eds) Rust diseases on willow and poplar. CAB International, Wallingford, UK, pp 139–154Google Scholar
  77. Pitre FE, Cooke JEK, Mackay JJ (2007a) Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Trees 21:249–259. doi: 10.1007/s00468-007-0123-5 CrossRefGoogle Scholar
  78. Pitre FE, Lafarguette F, Boyle B, Pavy N, Caron S, Dallaire N, Poulin P-L, Ouellet M, Morency M-J, Wiebe N, Ly Lim E, Urbain A, Mouille G, Cooke JEK, Mackay JJ (2010) High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiol 30:1273–1289. doi: 10.1093/treephys/tpq073 CrossRefGoogle Scholar
  79. Pitre FE, Pollet B, Lafarguette F, Cooke JEK, MacKay JJ, Lapierre C (2007b) Effects of increased nitrogen supply on the lignification of poplar wood. J Agr Food Chem 55:10306–10314. doi: 10.1021/jf071611e CrossRefGoogle Scholar
  80. Plavcová L, Hacke UG, Almeida-Rodriguez AM, Li E, Douglas CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36:186–199. doi: 10.1111/j.1365-3040.2012.02566.x CrossRefGoogle Scholar
  81. Polle A, Altman A, Jiang XN (2006) Towards genetic engineering for drought tolerance in trees. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer Verlag, Berlin, pp 275–297CrossRefGoogle Scholar
  82. Popko J, Hänsch R, Mendel R-R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258. doi: 10.1111/j.1438-8677.2009.00305.x CrossRefGoogle Scholar
  83. Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366. doi: 10.1104/pp. 106.094987 CrossRefGoogle Scholar
  84. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Bioref 4:209–226. doi: 10.1002/bbb.206 CrossRefGoogle Scholar
  85. Saunders DGO, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S (2012) Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 7:e29847. doi: 10.1371/journal.pone.0029847 CrossRefGoogle Scholar
  86. Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-glucanase (cel1). Mol Breed 14:321–330. doi: 10.1023/B:MOLB.0000049213.15952.8a CrossRefGoogle Scholar
  87. Shen B, Sun X, Zuo X, Shilling T, Apgar J, Ross M, Bougri O, Samoylov V, Parker M, Hancock E, Lucero H, Gray B, Ekborg NA, Zhang D, Johnson JCS, Lazar G, Raab RM (2012) Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing. Nat Biotech 30:1131–1136. doi: 10.1038/nbt.2402 CrossRefGoogle Scholar
  88. Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Op Plant Biol 13:312–319. doi: 10.1016/j.pbi.2010.03.001 CrossRefGoogle Scholar
  89. Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Global Change Biol 12:2054–2076. doi: 10.1111/j.1365-2486.2006.01163.x CrossRefGoogle Scholar
  90. Skyba O, Douglas C, Mansfield SD (2013) Syringyl-rich lignin renders poplar more resistant to degradation by wood decay fungi. Appl Environ Microbiol. doi: 10.1128/AEM.03182-12 Google Scholar
  91. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792. doi: 10.1126/science.1189268 CrossRefGoogle Scholar
  92. Strauss SH, Kershen DL, Bouton JH, Redick TP, Tan H, Sedjo RA (2010) Far-reaching deleterious impacts of regulations on research and environmental studies of recombinant DNA-modified perennial biofuel crops in the United States. BioSci 60:729–741. doi: 10.1525/bio.2010.60.9.10 CrossRefGoogle Scholar
  93. Sun R, Fang JM, Tomkinson J, Geng ZC, Liu JC (2001) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydr Pol 44:29–39. doi: 10.1016/S0144-8617(00)00196-X CrossRefGoogle Scholar
  94. Tamm Ü (2006) Populus tremula L. In: Schütt P, Weisgerber H, Schuck HJ, Lang UM, Stimm B, Roloff A (eds) Enzyklopädie der Laubbäume. Nikol, Hamburg, pp 405–414Google Scholar
  95. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 CrossRefGoogle Scholar
  96. Tuskan GA, DiFazio SP, Teichmann T (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol 6:2–4. doi: 10.1055/s-2003-44715 CrossRefGoogle Scholar
  97. Van Acker R, Storme V, Goeminne G, Ivens B, Custers R, Aerts D, Soetaert W, Ralph J, Santoro N, Leplé J-C, Pilate G, Boerjan W (2011) Science, society and biosafety of a field trial with transgenic biofuel poplars. BMC Proc 5:I23. doi: 10.1186/1753-6561-5-S7-I23 CrossRefGoogle Scholar
  98. Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Leplé JC, Pilate G, Cornu D, Monties B, Van Montagu M, Inze D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid 5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864CrossRefGoogle Scholar
  99. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi: 10.1111/j.1469-8137.2012.04337.x CrossRefGoogle Scholar
  100. Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886. doi: 10.1104/pp. 110.159269 CrossRefGoogle Scholar
  101. Wadenbäck J, Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2007) Lignin biosynthesis in transgenic Norway Spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenetic Res 17:379–392. doi: 10.1007/s11248-007-9113-z CrossRefGoogle Scholar
  102. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2008) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383. doi: 10.1104/pp. 108.125765 CrossRefGoogle Scholar
  103. Wang H, Xue Y, Chen Y, Li R, Wei J (2012) Lignin modification improves the biofuel production potential in transgenic Populus tomentosa. Ind Crop Prod 37:170–177. doi: 10.1016/j.indcrop.2011.12.014 CrossRefGoogle Scholar
  104. Wei J, Wang Y, Wang H, Li R, Lin N, Ma R, Qu L, Song Y (2008) Pulping performance of transgenic poplar with depressed caffeoyl-CoA O-methyltransferase. Chin Sci Bull 53:3553–3558. doi: 10.1007/s11434-008-0477-0 CrossRefGoogle Scholar
  105. Widin KD, Schipper AL (1981) Effect of Melampsora medusae leaf rust infection on yield of hybrid poplars in the north-central United States. Eur J Forest Pathol 11:438–448CrossRefGoogle Scholar
  106. Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim J-S, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D (2013) Engineering secondary cell wall deposition in plants. Plant Biotech J 11:325–335. doi: 10.1111/pbi.12016 CrossRefGoogle Scholar
  107. Zhang J, Steenackers M, Storme V, Neyrinck S, Van Montagu M, Gerats T, Boerjan W (2001) Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER locus in Populus deltoides “S9-2. Phytopath 91:1069–1073. doi: 10.1094/PHYTO.2001.91.11.1069 CrossRefGoogle Scholar
  108. Zhong R, McCarthy RL, Lee C, Ye Z-H (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468. doi: 10.1104/pp. 111.181354 CrossRefGoogle Scholar
  109. Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye Z-H (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–578. doi: 10.1104/pp. 124.2.563 CrossRefGoogle Scholar
  110. Zhou G, Taylor G, Polle A (2011) FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Meth 7:9. doi: 10.1186/1746-4811-7-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Forest Botany and Tree Physiology, Büsgen-InstitutGeorg-August Universität GöttingenGöttingenGermany
  2. 2.Plant Cell Biology, Albrecht von Haller InstitutGeorg-August Universität GöttingenGöttingenGermany

Personalised recommendations