Applied Microbiology and Biotechnology

, Volume 97, Issue 12, pp 5493–5506 | Cite as

Proteome analysis of virus–host cell interaction: rabies virus replication in Vero cells in two different media

  • Sabine Kluge
  • Samia Rourou
  • Diana Vester
  • Samy Majoul
  • Dirk Benndorf
  • Yvonne Genzel
  • Erdmann RappEmail author
  • Héla Kallel
  • Udo Reichl
Genomics, transcriptomics, proteomics


The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.


Vero cells Rabies virus Virus–host cell interaction Cell culture engineering Quantitative proteomics 



The authors are grateful to Barbara Koehler for supporting the in-gel digestion.

Supplementary material

253_2013_4939_MOESM1_ESM.doc (3.4 mb)
ESM 1 (DOC 3.43 mB)


  1. Acton SL, Brodsky FM (1990) Predominance of clathrin light chain Lcb correlates with the presence of a regulated secretory pathway. J Cell Biol 111(4):1419–1426Google Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. Burgoyne RD, Geisow MJ (1989) The annexin family of calcium-binding proteins. Cell Calcium 10(1):1–10CrossRefGoogle Scholar
  4. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68(3):283–291CrossRefGoogle Scholar
  5. Critchley DR (2000) Focal adhesions—the cytoskeletal connection. Curr Opin Cell Biol 12(1):133–139CrossRefGoogle Scholar
  6. dela Luz-Hernández KR, Rojas-del CL, Rabasa-Legón Y, Lage-Castellanos A, Castillo-Vitlloch A, Díaz J, Gaskell S (2008a) Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium. J Proteomics 71(2):133–147CrossRefGoogle Scholar
  7. dela Luz-Hernández KR, Rojas-del CL, Victores-Sarasola S, Lage-Castellanos A, Eyers C, Hart S, Castellanos-Serra L, Castillo-Vitlloch A, Gaskell S (2008b) Proteomic analysis of the adaptation of the host NS0 myeloma cell line to a protein-free medium. Biotecnol Apl 24:215–223Google Scholar
  8. Dhingra V, Li X, Liu Y, Fu ZF (2007) Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 13(2):107–117CrossRefGoogle Scholar
  9. Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nature Rev Mol Cell Biol 11(4):276–287CrossRefGoogle Scholar
  10. Frazatti-Gallina NM, Mourão-Fuches RM, Paoli RL, Silva ML, Miyaki C, Valentini EJ, Raw I, Higashi HG (2004) Vero-cell rabies vaccine produced using serum-free medium. Vaccine 23(4):511–517CrossRefGoogle Scholar
  11. Genzel Y, Ritter JB, König S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21(1):58–69CrossRefGoogle Scholar
  12. Genzel Y, Reichl U (2009) Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8(12):1681–1692Google Scholar
  13. Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U (2010) MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 88(2):461–475Google Scholar
  14. Gerke V, Moss SE (1997) Annexins and membrane dynamics. Biochim Biophys Acta 1357(2):129–154CrossRefGoogle Scholar
  15. Görg A, Obermaier C, Boguth G, Csordas A, Diaz JJ, Madjar JJ (1997) Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18(3–4):328–337CrossRefGoogle Scholar
  16. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6):1037–1053CrossRefGoogle Scholar
  17. Hubbard MJ, McHugh NJ, Carne DL (2000) Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells—evidence for a unique role in secretory-protein synthesis. Eur J Biochem 267(7):1945–1956CrossRefGoogle Scholar
  18. Ivanov I, Yabukarski F, Ruigrok RWH, Jamin M (2011) Structural insights into the rhabdovirus transcription/replication complex. Virus Res 162:126–137CrossRefGoogle Scholar
  19. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062CrossRefGoogle Scholar
  20. Janke R, Genzel Y, Wetzel M, Reichl U (2011) Effect of influenza virus infection on key metabolic enzyme activities in MDCK cells. BMC Proc 5(8):129CrossRefGoogle Scholar
  21. Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnol 33(1–3):27–36CrossRefGoogle Scholar
  22. Kim JY, Kim YG, Han YK, Choi HS, Kim YH, Lee GM (2011) Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Appl Microbiol Biotechnol 89(6):1917–1928CrossRefGoogle Scholar
  23. Knull HR, Walsh JL (1992) Association of glycolytic-enzymes with the cytoskeleton. Curr Top Cell Regul 33:15–30Google Scholar
  24. Krampe B, Swiderek H, Al-Rubeai M (2008) Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture. Biotechnol Appl Biochem 50:133–141CrossRefGoogle Scholar
  25. Kuystermans D, Krampe B, Swiderek H, Al-Rubeai M (2007) Using cell engineering and omic tools for the improvement of cell culture processes. Cytotechnol 53(1–3):3–22CrossRefGoogle Scholar
  26. Lee KH, Sburlati A, Renner WA, Bailey JE (1996) Deregulated expression of cloned transcription factor E2F-1 in Chinese hamster ovary cells shifts protein patterns and activates growth in protein-free medium. Biotechnol Bioeng 50(3):273–279CrossRefGoogle Scholar
  27. Lohr V, Rath A, Genzel Y, Jordan I, Sandig V, Reichl U (2009) New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine 27(36):4975–4982Google Scholar
  28. Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, Van der Werf S, Perrin P (1999) The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnol 30(1–3):191–201CrossRefGoogle Scholar
  29. Merten OW, Kierulff JV, Castignolles N, Perrin P (1994) Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnol 14(1):47–59CrossRefGoogle Scholar
  30. Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, dos Santos ARS, Farina M, Dafre AL (2011) A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radical Biol Med 51(1):69–77CrossRefGoogle Scholar
  31. Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166(1):152–169Google Scholar
  32. Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256(1–2):5–12CrossRefGoogle Scholar
  33. Ozawa M, Muramatsu T (1993) Reticulocalbin, a novel endoplasmic-reticulum resident Ca2+-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J Biol Chem 268(1):699–705Google Scholar
  34. Passini CA, Goochee CF (1989) Response of a mouse hybridoma cell-Line to heat-shock, agitation, and sparging. Biotechnol Prog 5(4):175–188CrossRefGoogle Scholar
  35. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567CrossRefGoogle Scholar
  36. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5(3):177–187CrossRefGoogle Scholar
  37. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 4:61CrossRefGoogle Scholar
  38. Rödig JV, Rapp E, Hoper D, Genzel Y, Reichl U (2011) Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin. PLoS One 6(12):e27989CrossRefGoogle Scholar
  39. Rödig JV, Rapp E, Bohne J, Kampe M, Kaffka H, Bock A, Genzel Y, Reichl U (2013) Impact of cultivation conditions on N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Biotechnol Bioeng. doi: 10.1002/bit.24834 Google Scholar
  40. Rourou S, van der Ark A, Majoul S, Trabelsi K, van der Velden T, Kallel H (2009a) A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 85(1):53–63CrossRefGoogle Scholar
  41. Rourou S, van der Ark A, van der Velden T, Kallel H (2007) A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine 25(19):3879–3889CrossRefGoogle Scholar
  42. Rourou S, van der Ark A, van der Velden T, Kallel H (2009b) Development of an animal-component free medium for Vero cells culture. Biotechnol Prog 25(6):1752–1761Google Scholar
  43. Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4):134–140Google Scholar
  44. Seow TK, Korke R, Liang RC, Ong SE, Ou K, Wong K, Hu WS, Chung MC (2001) Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17(6):1137–1144CrossRefGoogle Scholar
  45. Smith JS, Yager PA, Baer GM (1973) A rapid tissue culture test for determining rabies neutralizing antibody. Monogr Ser World Health Organ 23:354–357Google Scholar
  46. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radical Biol Med 51(2):299–313CrossRefGoogle Scholar
  47. Trabelsi K, Rourou S, Loukil H, Majoul S, Kallel H (2006) Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. J Biotechnol 121(2):261–271CrossRefGoogle Scholar
  48. van Zon A, Mossink MH, Houtsmuller AB, Schoester M, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EAC (2006) Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope. Exp Cell Res 312(3):245–255Google Scholar
  49. Vester D, Rapp E, Gade D, Genzel Y, Reichl U (2009) Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9(12):3316–3327CrossRefGoogle Scholar
  50. Vester D, Rapp E, Kluge S, Genzel Y, Reichl U (2010) Virus-host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: a proteomic approach. J Proteomics 73(9):1656–1669CrossRefGoogle Scholar
  51. Wang X, Zhang S, Sun C, Yuan ZG, Wu X, Wang D, Ding Z, Hu R (2011) Proteomic profiles of mouse neuro N2a cells infected with variant virulence of rabies viruses. J Microbiol Biotechnol 21(4):366–373Google Scholar
  52. WHO (2005) Expert consultation on rabies. World Health Organ Tech Rep Ser 931:1–88Google Scholar
  53. Xing HM, Zhang SS, Weinheimer C, Kovacs A, Muslin AJ (2000) 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J 19(3):349–358CrossRefGoogle Scholar
  54. Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B (2009) Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9(9):2399–2407CrossRefGoogle Scholar
  55. Zhao J, Meyerkord CL, Du YH, Khuri FR, Fu HA (2011) 14-3-3 proteins as potential therapeutic targets. Sem Cell Dev Biol 22(7):705–712CrossRefGoogle Scholar
  56. Zhou YB, Frey TK, Yang JJ (2009) Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46(1):1–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sabine Kluge
    • 1
  • Samia Rourou
    • 2
  • Diana Vester
    • 1
  • Samy Majoul
    • 2
  • Dirk Benndorf
    • 1
  • Yvonne Genzel
    • 3
  • Erdmann Rapp
    • 3
    Email author
  • Héla Kallel
    • 2
  • Udo Reichl
    • 1
    • 3
  1. 1.Otto von Guericke UniversityBioprocess EngineeringMagdeburgGermany
  2. 2.Viral Vaccines Research and Development Unit, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology DevelopmentInstitute Pasteur de TunisTunisTunisia
  3. 3.Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringMagdeburgGermany

Personalised recommendations