Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 12, pp 5177–5188 | Cite as

Flavoprotein oxidases: classification and applications

  • Willem P. Dijkman
  • Gonzalo de Gonzalo
  • Andrea Mattevi
  • Marco W. FraaijeEmail author
Mini-Review

Abstract

This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compounds to the integration in biosensors. Through the recent developments in genome sequencing, the number of newly discovered oxidases is steadily growing. Recent progress in the field of flavoprotein oxidase discovery and the obtained biochemical knowledge on these enzymes are reviewed. Except for a structure-based classification of known flavoprotein oxidases, also their potential in recent biotechnological applications is discussed.

Keywords

Flavoproteins Oxidases Biocatalysis Biosensors Flavin Oxygen 

Notes

Acknowledgements

M.W. Fraaije and A. Mattevi received support from the European Union's Seventh Framework Programme (FP7/2007-2013), project Oxygreen (grant agreement no. 212281).

References

  1. Araki K, Inaba K (2012) Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid Redox Signal 16:790–799CrossRefGoogle Scholar
  2. Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J Biol Chem 256:590–600Google Scholar
  3. Bankar SB, Bule MV, Singhal RS, Ananthanaryan L (2009) Glucose oxidase: an overview. Biotechnol Adv 27:489–501CrossRefGoogle Scholar
  4. Baron R, Riley C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris, F, Van Berkel WJH, Chaiyen P, Fraaije W, Mattevi A, McCammon JA (2009) Multiple pathways guide oxygen diffusion into flavoenzyme active sites. PNAS 106:10603–10608.Google Scholar
  5. Binzak B, Willard J, Vockley J (1998) Identification of the catalytic redidue of human short/branched chain acyl-CoA dehydrogenase by in vitro mutagenesis. Biochim Biophys Acta 1382:137–142CrossRefGoogle Scholar
  6. Bifulco D, Pollegioni L, Tessaro D, Servi S, Molla G (2013) A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol. doi: 10.1007/s00253-013-4688-1
  7. Biswal BK, Cherney MM, Wang M, Garen C, James MNG (2005) Structure of Mycobacterium tuberculosis pyridoxine 5’-phosphate oxidase and its complexes with flavin mononucleotide and pyridoxal 5’-phosphate. Acta Crystallogr D: Biol Crystallogr 61:1492–1499CrossRefGoogle Scholar
  8. Bruckner RC, Jorns MS (2009) Spectral and kinetic characterization of intermediates in the aromatization reaction catalysed by nikD, an unusual amino acid oxidase. Biochemistry 48:4455–4465CrossRefGoogle Scholar
  9. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593CrossRefGoogle Scholar
  10. Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends BiochemSci 37:373–380CrossRefGoogle Scholar
  11. Chen Z, Hassan-Abdulah A, Zhao G, Schuman Jorns M, Mathews FS (2006) Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 Å resolution. J Mol Biol 360:1000–1018CrossRefGoogle Scholar
  12. Choi KJ, Noh KM, Kim DE, Ha BH, Kim EE, Yoon MY (2007) Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Arch Biochem Biophys 466:24–30CrossRefGoogle Scholar
  13. Coulombe R, Yue KQ, Ghisla S, Vrielink A (2001) Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg–Glu pair. J Biol Chem 276:30435–30441CrossRefGoogle Scholar
  14. Cunane LM, Barton JD, Chen Z, Diêp Lê KH, Amar D, Lederer F, Mathews FS (2005) Crystal structure analysis of recombinant rat kidney long chain hydroxyl acid oxidase. Biochem 44:1521–1531CrossRefGoogle Scholar
  15. Debeurme F, Picciocchi A, Dagher MC, Grunwald D, Beaumel S, Fieschi F, Stasia MJ (2010) Regulation of NADPH oxidase activity in phagocytes relationship between FAD/NADPH binding and oxidase complex assembly. J Biol Chem 285:33197–33208CrossRefGoogle Scholar
  16. Decker K, Dai VD (1967) Mechanism and specificity of L- and D-6-hydroxynicotine oxidase. Eur J Biochem 3:132CrossRefGoogle Scholar
  17. Digits JA, Pyun H-J, Coates RM, Casey PJ (2002) Stereospecificity and kinetic mechanism of human prenylcysteine lyase, an usual thioether oxidase. J Biol Chem 277:41086–41093CrossRefGoogle Scholar
  18. Di Salvo ML, Contestabile R, Safo MK (2011) Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta 1814:1597–1608CrossRefGoogle Scholar
  19. Endo T, Yamano K, Kawano S (2010) Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Sign 13:1359–1373CrossRefGoogle Scholar
  20. Fan F, Ghanem M, Gadda G (2004) Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch Biochim Biophys 421:149–158CrossRefGoogle Scholar
  21. Fass D (2008) The Erv family of sulfhydryl oxidases. Biochim Biophys Acta 1783:557–566CrossRefGoogle Scholar
  22. Fetzner S, Steiner RA (2010) Cofactor-independent oxidases and oxygenases. Appl Microbiol Biotechnol 86:791–804CrossRefGoogle Scholar
  23. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222CrossRefGoogle Scholar
  24. Fitzpatrick PF (2010) Oxidation of amines by flavoproteins. Arch Biochem Biophys 493:13–25CrossRefGoogle Scholar
  25. Fraaije MW, Veeger C, van Berkel WJH (1995) Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Eur J Biochem 234:271–277CrossRefGoogle Scholar
  26. Fraaije MW, van Berkel WJ, Benen JA, Visser J, Mattevi A (1998) A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends Biochem Sci 23:206–207CrossRefGoogle Scholar
  27. Fraaije MW, van den Heuvel RHH, van Berkel WJH, Mattevi A (1999) Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J BiolChem 274:35514–35520Google Scholar
  28. Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends BiochemSci 25:126–132CrossRefGoogle Scholar
  29. Furuichi M, Suzuki N, Dhakshnamoorthy B, Minagawa H, Yamagishi R, Watanabe Y, Goto Y, Kaneko H, Yoshida Y, Yagi H, Waga I, Kuamr PKR, Mizuno H (2008) X-ray structure of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an α-hydroxyacid oxidation mechanism. J Mol Biol 378:436–446CrossRefGoogle Scholar
  30. Gadda G (2012) Oxygen activation in flavoprotein oxidases: the importance of being positive. Biochemistry 51:2662–2669CrossRefGoogle Scholar
  31. Gross E, Kastner DB, Kaiser CA, Fass D (2004) Structure of Ero1p, source of disulphide bonds for oxidative protein folding in the cell. Cell 117:601–610CrossRefGoogle Scholar
  32. Guengerich FP (2012) Thematic minireview series: Metals in Biology 2012. J Biol Chem 287:13508–13509, and references thereinCrossRefGoogle Scholar
  33. Guo PC, Ma YL, Jiang YL, Wang SJ, Bao ZZ, Yu XJ, Chen Y, Zhou CZ (2012) Structure of yeast sulfhydryl oxidase Erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space. J Biol Chem 42:34961–34969CrossRefGoogle Scholar
  34. Hanson RL, Davis BL, Goldberg SL, Johnston RM, Parker WL, Tully TP, Montana MA, Patel RN (2008) Enzymatic preparation of a D-amino acid from a racemic amino aicd or keto acid. Org Proc Res Dev 12:1119–1129CrossRefGoogle Scholar
  35. van Hellemond EW, van Dijk M, Heuts DPHM, Janssen DB, Fraaije MW (2008) Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Appl Microbiol Biotechnol 78:455–463CrossRefGoogle Scholar
  36. Heuts DPHM, Janssen DB, Fraaije MW (2007a) A) Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. FEBS L 581:4905–4909CrossRefGoogle Scholar
  37. Heuts DPHM, van Hellemond EW, Janssen DB, Fraaije MW (2007b) B) Discovery, characterization, and kinetic analysis of an alditol oxidase from Streptomyces coelicolor. J Biol Chem 282:2028320291CrossRefGoogle Scholar
  38. Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW (2009) What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 276:3405–3427CrossRefGoogle Scholar
  39. Jin J, Mazon H, van den Heuvel RHH, Janssen DB, Fraaije MW (2007) Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 274:2311–2321CrossRefGoogle Scholar
  40. Kasahara K, Miyamoto T, Fujimoto T, Oguri H, Tokiwano T, Oikawa H, Ebizuka Y, Fujii I (2010) Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chem Bio Chem 11:1245–1252CrossRefGoogle Scholar
  41. Kazarinoff MN, McCormick DB (1973) N-(5’-phospho-4’-pyridoxyl) amines as substrates for pyridoxine (pyridoxamine) 5’-phosphate oxidase. Biochem Biophys Res Commun 52:440–446CrossRefGoogle Scholar
  42. Kazarinoff MN, McCormick DB (1975) Rabbit liver pyridoxamine (pyridoxine) 5’-phosphate oxidase. Purification and properties. J Biol Chem 250:3436–3442Google Scholar
  43. Kiess M, Hecht HJ, Kalisz HM (1998) Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with the other glucose-methanol-choline (GMC) oxidoreductases. Eur J Biochem 252:90–99CrossRefGoogle Scholar
  44. Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474:292–301CrossRefGoogle Scholar
  45. Leferink NGH, Fraaije MW, Joosten HJ, Schaap PJ, Mattevi A, van Berkel WJH (2009) Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem 284:4392–4397CrossRefGoogle Scholar
  46. Leys D, Basran J, Scrutton NS (2003) Channeling and formation of 'active' formaldehyde in dimethylglycine oxidase. EMBO J 22:4038–4048CrossRefGoogle Scholar
  47. Li Y, Gao Z, Hou H, Zhang J, Yang H, Dong Y, Tan H (2011) Crystal structure and site-directed mutatgenesis of a nitroalkane oxidase from Streptomyces ansochromogenes. Biochem Biophys Res Commun 405:344–348CrossRefGoogle Scholar
  48. Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634CrossRefGoogle Scholar
  49. Mattevi A, Fraaije MW, Coda A, van Berkel WJH (1997) Crystallization an preliminary x-ray analysis of the flavoenzyme vanillyl-alcohol oxidase from Penicillium simplicissimum. Proteins 27:601–603CrossRefGoogle Scholar
  50. Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283CrossRefGoogle Scholar
  51. Muller YA, Schumacher G, Rudolph R, Schultz GE (1994) The refined structure of a stabilized mutant and of wild-type pyruvate oxidasse from Lactobacillus plantarum. J Mol Biol 237:315–335CrossRefGoogle Scholar
  52. Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85–86:71–92CrossRefGoogle Scholar
  53. Nishino T, Okamoto K, Kawaguchi Y, Hori H, Matsumura T, Eger BT, Pai EF, Nishino T (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase. J Biol Chem 280:2488–24894CrossRefGoogle Scholar
  54. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) Mammalian xanthine oxidoreductases—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275:3278–3289CrossRefGoogle Scholar
  55. Pauff JM, Hemann CF, Junemann N, Leimkuhler S, Hille R (2007) The role of arginine 310 in catalysis and substrate specificity in xanthine dehydrogenase from Rhodobacter capsulatus. J Biol Chem 282:12785–12790CrossRefGoogle Scholar
  56. Patel RN, Chen Y, Goldberg SL, Hanson RL, Goswami A, Tully TP, Parker WL (2007) PCT Int. Appl WO 2007112299 A2 20071004, CAN147:425649:1120352.Google Scholar
  57. Patel RN (2011) Biocatalysis: synthesis of key intermediates for development of pharmaceuticals. ACS Catal 1:11056–1074CrossRefGoogle Scholar
  58. Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone PL (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J BiolChem 284:36415–36423Google Scholar
  59. Pillone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. BiocatBiotrans 20:145–159CrossRefGoogle Scholar
  60. Pollard MG, Travers KJ, Weissman JS (1998) Ero1P: novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–82CrossRefGoogle Scholar
  61. Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS (2008) Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotech 78:1–16CrossRefGoogle Scholar
  62. Qian Y, Zheng J, Lin Z (2013) Loop engineering of amadoriase II and mutational cooperativity. Appl Microbiol Biotechnol. doi: 10.1007/s00253-013-4705-4
  63. Resch V, Schrittwieser JH, Wallner S, Macheroux P, Kroutil W (2011) Biocatalytic oxidative C–C bond formation catalysed by the berberine bridge enzyme: optimal reaction conditions. Adv Synth Catal 353:2377–2383CrossRefGoogle Scholar
  64. Resch V, Lechner H, Schrittwieser JH, Wallner S, Gruber K, Macheroux P, Kroutil W (2012) Inverting the regioselectivity of the Berberine Bridge Enzyme by employing customized fluorine-containing substrates. Chem Eur J 18:13173–13179CrossRefGoogle Scholar
  65. Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One 3:e1378CrossRefGoogle Scholar
  66. Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. PNAS 100:62–67CrossRefGoogle Scholar
  67. Schrittwieser JH, Resch V, Sattler JH, Lienhart WD, Durchschein K, Winkler A, Gruber K, Macheroux P, Kroutil W (2011a) Biocatalytic enantioselective oxidative C–C coupling by aerobic C–H activation. Angew Chem Int Ed 50:1068–1071CrossRefGoogle Scholar
  68. Schrittwieser JH, Resch V, Wallner V, Lienhart WD, Sattler JH, Resch J, Macheroux P, Kroutil W (2011b) Biocatalytic organic synthesis of optically pure (S)-scoulerine and berbine and benzylisoquinoline alkaloids. J Org Chem 76:6703–6714CrossRefGoogle Scholar
  69. Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL (2002) Sulfhydryl oxidases: emerging catalysts of protein disulphide bond formation in eukaryotes. Arch Biochem Biophys 405:1–12CrossRefGoogle Scholar
  70. Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G (2005) Redical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via transient FAD semiquinone/hydrogyethyl-THDP radical pair. Biochemistry 44:13291–13303CrossRefGoogle Scholar
  71. Tokuoka K, Nakajima Y, Hirotsu K, Miyahara I, Nishina Y, Shiga K, Tamaoki H, Setoyama C, Tojo H, Miura R (2006) Three-dimensional structure of rat-liver Acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen. J Biochem 139:789–795CrossRefGoogle Scholar
  72. Tormos JR, Taylor AB, Daubner SC, Hart PJ, Fitzpatrick PF (2010) Identification of a hypothetical protein from Podospora anserine as a nitroalkane oxidase. Biochemistry 24:5035–5041CrossRefGoogle Scholar
  73. Trickey P, Wagner MA, Schuman Jorns M, Mathews FS (1999) Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7:331–345CrossRefGoogle Scholar
  74. Turner NJ (2011) Enantioselective oxidation of C–O and C–N bonds using oxidases. Chem Rev 111:4073–4087CrossRefGoogle Scholar
  75. Umena Y, Yorita K, Matsuoka K, Kita A, Fukui K, Morimoto Y (2006) The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1 Å resolution reveals the mechanism of strict substrate recognition. Biochemistry 350:249–256Google Scholar
  76. Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, Gruber K (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4:739–741CrossRefGoogle Scholar
  77. Winter RT, Fraaije MW (2012) Applications of flavoprotein oxidases in organic synthesis: novel reactivities that go beyond amine and alcohol oxidation. Curr Org Chem 16:2542–2550CrossRefGoogle Scholar
  78. Winter RT, Heuts DPHM, Rijpkema EMA, van Bloois E, Wijma HJ, Fraaije MW (2012) Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolytics 11B. Appl Microbiol Biotech 95:389–403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Willem P. Dijkman
    • 1
  • Gonzalo de Gonzalo
    • 1
  • Andrea Mattevi
    • 2
  • Marco W. Fraaije
    • 1
    Email author
  1. 1.Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly

Personalised recommendations