Applied Microbiology and Biotechnology

, Volume 97, Issue 11, pp 4749–4762 | Cite as

A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics

  • Laurence Van Oudenhove
  • Bart DevreeseEmail author


Proteomics has evolved substantially since its early days, some 20 years ago. In this mini-review, we aim to provide an overview of general methodologies and more recent developments in mass spectrometric approaches used for relative and absolute quantitation of proteins. Enhancement of sensitivity of the mass spectrometers as well as improved sample preparation and protein fractionation methods are resulting in a more comprehensive analysis of proteomes. We also document some upcoming trends for quantitative proteomics such as the use of label-free quantification methods. Hopefully, microbiologists will continue to explore proteomics as a tool in their research to understand the adaptation of microorganisms to their ever changing environment. We encourage them to incorporate some of the described new developments in mass spectrometry to facilitate their analyses and improve the general knowledge of the fascinating world of microorganisms.


Mass spectrometry Quantitative proteomics Multidimensional chromatography Microbiology 



The authors are indebted to the Belgian Federal Government’s Interuniversity Attraction Pole Action P7/44, to the “Bijzonder Onderzoeksfonds” from Ghent University for a concerted action grant, and to the Hercules Foundation (grant AUGENT019).

Conflict of interest

The authors have declared no conflict of interest.


  1. Abram F, Gunnigle E, O’Flaherty V (2009) Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis 30:4149–4151CrossRefGoogle Scholar
  2. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  3. Altelaar AFM, Frese CK, Preisinger C, Hennrich ML, Schram AW, Timmers HTM, Heck AJR, Mohammed S (2012) Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics. doi: 10.1016/j.jprot.2012.10.009 Google Scholar
  4. America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749CrossRefGoogle Scholar
  5. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861CrossRefGoogle Scholar
  6. Andrews GL, Simons BG, Bryce Young J, Hawkridge AM, Muddiman DC (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83:5442–5446CrossRefGoogle Scholar
  7. Armengaud J (2012) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol. doi: 10.1111/j.1462-2920.2012.02811.x Google Scholar
  8. Asara JM, Christofk HR, Freimark LM, Cantley LC (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8:994–999CrossRefGoogle Scholar
  9. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031CrossRefGoogle Scholar
  10. Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JP (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803CrossRefGoogle Scholar
  11. Bensi G, Mora M, Tuscano G, Biagini M, Chiarot E, Bombaci M, Capo S, Falugi F, Manetti AG, Donato P, Swennen E, Gallotta M, Garibaldi M, Pinto V, Chiappini N, Musser JM, Janulczyk R, Mariani M, Scarselli M, Telford JL, Grifantini R, Norais N, Margarit I, Grandi G (2012) Multi high-throughput approach for highly selective identification of vaccine candidates: the group A Streptococcus case. Mol Cell Proteomics 11:M111.015693CrossRefGoogle Scholar
  12. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587–589CrossRefGoogle Scholar
  13. Bhaduri S, Demchick PH (1983) Simple and rapid method for disruption of bacteria for protein studies. Appl Environ Microbiol 46:941–943Google Scholar
  14. Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB (2010) Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J Proteome Res 9:3621–3637CrossRefGoogle Scholar
  15. Blaze MTM, Aydin B, Carlson RP, Hanley L (2012) Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry. Analyst 137:5018–5025CrossRefGoogle Scholar
  16. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494CrossRefGoogle Scholar
  17. Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749CrossRefGoogle Scholar
  18. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards : towards absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149CrossRefGoogle Scholar
  19. Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 72:740–749CrossRefGoogle Scholar
  20. Bunai K, Nozaki M, Kakeshita H, Nemoto T, Yamane K (2005) Quantification of de novo localized 15N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. J Prot Res 4:826–836CrossRefGoogle Scholar
  21. Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258CrossRefGoogle Scholar
  22. Chakraborty AB, Berger SJ, Gebler JC (2007) Use of an integrated MS-multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Rapid commun mass spectrom 21:730–744CrossRefGoogle Scholar
  23. Cham Mead JA, Bianco L, Bessant C (2010) Free computational resources for designing selected reaction monitoring transitions. Proteomics 10:1106–1126CrossRefGoogle Scholar
  24. Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323CrossRefGoogle Scholar
  25. Chen EI, Cociorva D, Norris JL, Yates JR III (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538CrossRefGoogle Scholar
  26. Cordwell SJ, Nouwens AS, Walsh BJ (2001) Comparative proteomics of bacterial pathogens. Proteomics 1:461–472CrossRefGoogle Scholar
  27. Cox DM, Zhong F, Du M, Duchoslav E, Sakuma T, McDermott JC (2005) Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J Biomol Tech 16:83–90Google Scholar
  28. de Souza GA, Målen H, Søfteland T, Sælensminde G, Prasad S, Jonassen I, Wiker HG (2008) High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics 9:316. doi: 10.1186/1471-2164-9-316 CrossRefGoogle Scholar
  29. de Villiers A, Lestremau F, Szucs R, Gélébart S, David F, Sandra P (2006) Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. J Chromatogr A 1127:60–69CrossRefGoogle Scholar
  30. Doherty MK, Whitfield PD (2011) Proteomics moves from expression to turnover: update and future perspective. Expert Rev Proteomics 8:325–334CrossRefGoogle Scholar
  31. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217CrossRefGoogle Scholar
  32. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721CrossRefGoogle Scholar
  33. Dowell JA, Frost DC, Zhang J, Li L (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723CrossRefGoogle Scholar
  34. Dupuis A, Hennekinne JA, Garin J, Brun V (2008) Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics 8:4633–4636CrossRefGoogle Scholar
  35. Eeltink S, Dolman S, Detobel F, Swart R, Ursem M, Schoenmakers PJ (2010) High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J Chromatogr A 1217:6610–6615CrossRefGoogle Scholar
  36. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027CrossRefGoogle Scholar
  37. Fischer F, Wolters D, Rögner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453Google Scholar
  38. Fournier PE, Raoult D (2011) Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 65:169–188CrossRefGoogle Scholar
  39. Geiger T, Cox J, Mann M (2010a) Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252–2261CrossRefGoogle Scholar
  40. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010b) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385CrossRefGoogle Scholar
  41. Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, Mann M (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6:147–157CrossRefGoogle Scholar
  42. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945CrossRefGoogle Scholar
  43. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–1695CrossRefGoogle Scholar
  44. Gilar M, Olivova P, Daly AE, Gebler JC (2005a) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77:6426–6434CrossRefGoogle Scholar
  45. Gilar M, Olivova P, Daly AE, Gebler JC (2005b) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703CrossRefGoogle Scholar
  46. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(O111):016717. doi: 10.1074/mcp.O111.016717 Google Scholar
  47. Goshe MB, Smith RD (2003) Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 14:101–109CrossRefGoogle Scholar
  48. Graham RLJ, Graham C, McMullan G (2007) Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 6:26. doi: 10.1186/1475-2859-6-26 CrossRefGoogle Scholar
  49. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17:994–999CrossRefGoogle Scholar
  50. Hahne H, Wolff S, Hecker M, Becher D (2008) From complementarity to comprehensiveness—targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136CrossRefGoogle Scholar
  51. Herbert BR, Grinyer J, McCarthy JT, Isaacs M, Harry EJ, Nevalainen H, Traini MD, Hunt S, Schulz B, Laver M, Goodall AR, Packer J, Harry JL, Williams KL (2006) Improved 2-DE of microorganisms after acidic extraction. Electrophoresis 27:1630–1640CrossRefGoogle Scholar
  52. Hettich RL, Sharma R, Chourey K, Giannone RJ (2012) Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr Opin Microbiol 15:373–380CrossRefGoogle Scholar
  53. Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y, Oda Y, Ikegami T, Tanaka N (2012) Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J Chromatogr A 1228:283–291CrossRefGoogle Scholar
  54. Horvatovich P, Hoekman B, Govorukhina N, Bischoff R (2010) Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J Sep Sci 33:1421–1437CrossRefGoogle Scholar
  55. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852CrossRefGoogle Scholar
  56. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443CrossRefGoogle Scholar
  57. Impens F, Colaert N, Helsens K, Ghesquière B, Timmerman E, De Bock PJ, Chain BM, Vandekerckhove J, Gevaert K (2010) A quantitative proteomics design for systematic identification of protease cleavage events. Mol Cell Proteomics 9:2327–2333CrossRefGoogle Scholar
  58. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272CrossRefGoogle Scholar
  59. Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y (2010) One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal Chem 82:2616–2620CrossRefGoogle Scholar
  60. Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B (2011) Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics 10(M110):002931. doi: 10.1074/mcp.M110.002931-1 Google Scholar
  61. Lacerda CM, Reardon KF (2009) Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic 8:75–87CrossRefGoogle Scholar
  62. Lasaosa M, Delmotte N, Huber CG, Melchior K, Heinzle E, Tholey A (2009) A 2D reversed-phase x ion-pair reversed-phase HPLC-MALDI TOF/TOF-MS approach for shotgun proteome analysis. Anal Bioanal Chem 393:1245–1256CrossRefGoogle Scholar
  63. Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R (2010) Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 10:2281–2291CrossRefGoogle Scholar
  64. Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics 11:3273–3287CrossRefGoogle Scholar
  65. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719CrossRefGoogle Scholar
  66. Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590CrossRefGoogle Scholar
  67. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201CrossRefGoogle Scholar
  68. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol 25:117–124CrossRefGoogle Scholar
  69. Lundgren DH, Hwang SI, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53CrossRefGoogle Scholar
  70. Luo Q, Page JS, Tang K, Smith RD (2007) MicroSPE-nanoLC-ESI-MS/MS using 10-μm-i.d. silica-based monolithic columns for proteomics. Anal Chem 79:540–545CrossRefGoogle Scholar
  71. Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentration of the human pathogen Leptospira interrogans. Nature 460:762–765CrossRefGoogle Scholar
  72. Mead JA, Bianco L, Bessant C (2009) Recent developments in public proteomic MS repositories and pipelines. Proteomics 9:861–881CrossRefGoogle Scholar
  73. Michalski A, Cox J, Mann M (2011a) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10:1785–1793CrossRefGoogle Scholar
  74. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011b) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10:M111.011015CrossRefGoogle Scholar
  75. Motoyama A, Yates JR III (2008) Multidimensional LC separations in shotgun proteomics. Anal Chem 80:7187–7193CrossRefGoogle Scholar
  76. Nakamura T, Kuromitsu J, Oda Y (2008) Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics. J Proteome Res 7:1007–1011CrossRefGoogle Scholar
  77. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553CrossRefGoogle Scholar
  78. Nilsson CL, Davidsson P (2000) New separation tools for comprehensive studies of protein expression by mass spectrometry. Mass Spectrom Rev 19:390–397CrossRefGoogle Scholar
  79. Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192CrossRefGoogle Scholar
  80. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596CrossRefGoogle Scholar
  81. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769CrossRefGoogle Scholar
  82. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefGoogle Scholar
  83. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262CrossRefGoogle Scholar
  84. Otto A, Bernhardt J, Hecker M, Becher D (2012) Global relative and absolute quantitation in microbial proteomics. Curr Opin Microbiol 15:364–372CrossRefGoogle Scholar
  85. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, Goodlett DR (2009) Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81:6481–6488CrossRefGoogle Scholar
  86. Patel KD, Jerkovich AD, Link JC, Jorgenson JW (2004) In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography. Anal Chem 76:5777–5786CrossRefGoogle Scholar
  87. Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, Langridge J, Murrell JC, Scrivens JH (2012) Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res 11:4755–4763CrossRefGoogle Scholar
  88. Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, Scrivens JH (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8:3752–3759CrossRefGoogle Scholar
  89. Phillips NJ, Steichen CT, Schilling B, Post DM, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW (2012) Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outer membrane proteins. PLOS One 7(6):e38303CrossRefGoogle Scholar
  90. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566CrossRefGoogle Scholar
  91. Podwojski K, Eisenacher M, Kohl M, Turewicz M, Meyer HE, Rahnenführer J, Stephan C (2010) Peek a peak: a glance at statistics for quantitative label-free proteomics. Expert Rev Proteomics 7:249–261CrossRefGoogle Scholar
  92. Poetsch A, Wolters D (2008) Bacterial membrane proteomics. Proteomics 8:4100–4122CrossRefGoogle Scholar
  93. Purvine S, Eppel JT, Yi EC, Goodlett DR (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850CrossRefGoogle Scholar
  94. Rao PK, Marcela Rodriguez G, Smith I, Li Q (2008) Protein dynamics in iron-starved Mycobacterium tuberculosis revealed by turnover and abundance measurement using hybrid-linear ion trap-Fourier transform mass spectrometry. Anal Chem 80:6860–6869CrossRefGoogle Scholar
  95. Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245CrossRefGoogle Scholar
  96. Richardson K, Denny R, Hughes C, Skilling J, Sikora J, Dadlez M, Manteca A, Jung HR, Jensen ON, Redeker V, Melki R, Langridge JI, Vissers JPC (2012) A probabilistic framework for peptide and protein quantification from data-dependent and data-independent LC-MS proteomics experiments. OMICS 16:468–482CrossRefGoogle Scholar
  97. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefGoogle Scholar
  98. Rozenbrand J, de Jong GJ, van Bennekom WP (2011) Comparison of monolithic and 1.8-μm RP-18 silica capillary columns using chromatographic data and mass spectrometric identification scores for proteins. J Sep Sci 34:2199–2205Google Scholar
  99. Sandra K, Moshir M, D’hondt F, Verleysen K, Kas K, Sandra P (2008) Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866:48–63CrossRefGoogle Scholar
  100. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15CrossRefGoogle Scholar
  101. Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R (2011) Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 7:510. doi: 10.1038/msb.2011.37 CrossRefGoogle Scholar
  102. Schwanhäusser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209CrossRefGoogle Scholar
  103. Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA (2004) Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cellul Prot 3:273–278CrossRefGoogle Scholar
  104. Shi Y, Xiang R, Horváth C, Wilkins JA (2004) The role of liquid chromatography in proteomics. J Chromatogr A 1053:27–36Google Scholar
  105. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200CrossRefGoogle Scholar
  106. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ (2006a) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607Google Scholar
  107. Silva JC, Gorenstein MV, Li GZ, Vissers JPC, Geromanos SJ (2006b) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156Google Scholar
  108. Simpson DM, Beynon RJ (2012) QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification. Anal Bioanal Chem 404:977–989CrossRefGoogle Scholar
  109. Sommer U, Petersen J, Pfeiffer M, Schrotz-King P, Morsczeck C (2010) Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal Escherichia coli strains. J Microbiol Methods 83:13–19CrossRefGoogle Scholar
  110. Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, Macek B (2010) Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res 9:3638–3646CrossRefGoogle Scholar
  111. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533CrossRefGoogle Scholar
  112. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR III, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893CrossRefGoogle Scholar
  113. Thein M, Sauer G, Paramasivam N, Grin I, Linke D (2010) Efficient subfractionation of Gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147CrossRefGoogle Scholar
  114. Thelen JJ, Miernyk JA (2012) The proteomic future: where mass spectrometry should be taking us. Biochem J 444:169–181CrossRefGoogle Scholar
  115. Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904CrossRefGoogle Scholar
  116. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric labeling-based multiplexed quantitative proteomics. Nat Methods 8:937–940CrossRefGoogle Scholar
  117. Valentine SJ, Ewing MA, Dilger JM, Glover MS, Geromanos S, Hughes C, Clemmer DE (2011) Using ion mobility data to improve peptide identification: intrinsic amino acid size parameters. J Proteome Res 10:2318–2329CrossRefGoogle Scholar
  118. Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B (2012) Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 95:717–733CrossRefGoogle Scholar
  119. Vanrobaeys F, Devreese B, Lecocq E, Rychlewski L, De Smet L, Van Beeumen J (2003) Proteomics of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1, using a matrix-assisted laser desorption/ionization-tandem-time of flight mass spectrometer. Proteomics 3:2249–2257CrossRefGoogle Scholar
  120. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45CrossRefGoogle Scholar
  121. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk K, Hettich RL, Jansson JK (2009) Shotgun proteomics of the human distal gut microbiota. ISME J 3:179–189CrossRefGoogle Scholar
  122. Vollmer M, Horth P, Ngele E (2004) Optimization of two-dimensional off-line LC/MS separations to improve resolution of complex proteomic samples. Anal Chem 76:5180–5185CrossRefGoogle Scholar
  123. Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol 19:242–247CrossRefGoogle Scholar
  124. Wecke T, Mascher T (2011) Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 66:2689–2704CrossRefGoogle Scholar
  125. Wenger CD, McAlister GC, Xia Q, Coon JJ (2010) Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled Orbitrap mass spectrometer. Mol Cell Proteomics 9:754–763CrossRefGoogle Scholar
  126. Wenzel M, Bandow JE (2011) Proteomic signatures in antibiotic research. Proteomics 11:3256–3268CrossRefGoogle Scholar
  127. Wilkins M (2009a) Proteomics data mining. Expert Rev Proteomics 6:599–603CrossRefGoogle Scholar
  128. Wilkins MR (2009b) Hares and tortoises: the high- versus low-throughput proteomic race. Electrophoresis 30:S150–S155CrossRefGoogle Scholar
  129. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157CrossRefGoogle Scholar
  130. Yu J, Guo J (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Prot Res 10:2992–2302CrossRefGoogle Scholar
  131. Yun SH, Choi CW, Kwon SO, Park GW, Cho K, Kwon KH, Kim JY, Yoo JS, Lee JC, Choi JS, Kim S, Kim SI (2011) Quantitative proteomic analysis of cell wall and plasma membrane fractions from multidrug-resistant Acinetobacter baumannii. J Proteome Res 10:459–469CrossRefGoogle Scholar
  132. Zhou Y, Chen WN (2011) iTRAQ-coupled 2-D LC-MS/MS analysis of membrane protein profile in Escherichia coli incubated with apidaecin IB. PLoS One 6:e20442. doi: 10.1371/journal.pone.0020442 CrossRefGoogle Scholar
  133. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and MicrobiologyGhent UniversityGhentBelgium

Personalised recommendations