Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 13, pp 5743–5752 | Cite as

Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation

  • Barbara Rodriguez-Colinas
  • Sofia Kolida
  • Magdalena Baran
  • Antonio O. Ballesteros
  • Robert A. Rastall
  • Francisco J. PlouEmail author
Biotechnological products and process engineering

Abstract

The in vitro fermentation of several purified galacto-oligosaccharides (GOS), specifically the trisaccharides 4′-galactosyl-lactose and 6′-galactosyl-lactose and a mixture of the disaccharides 6-galactobiose and allolactose, was carried out. The bifidogenic effect of GOS at 1 % (w/v) was studied in a pH-controlled batch culture fermentation system inoculated with healthy adult human faeces. Results were compared with those obtained with a commercial GOS mixture (Bimuno-GOS). Changes in bacterial populations measured through fluorescence in situ hybridization and short-chain fatty acid (SCFA) production were determined. Bifidobacteria increased after 10-h fermentation for all the GOS substrates, but the changes were only statistically significant (P < 0.05) for the mixture of disaccharides and Bimuno-GOS. Acetic acid, whose formation is consistent with bifidobacteria metabolism, was the major SCFA synthesized. The acetate concentration at 10 h was similar with all the substrates (45–50 mM) and significantly higher than the observed for formic, propionic and butyric acids. All the purified GOS could be considered bifidogenic under the assayed conditions, displaying a selectivity index in the range 2.1–3.0, which was slightly lower than the determined for the commercial mixture Bimuno-GOS.

Keywords

Batch culture system Galacto-oligosaccharides Prebiotics Transglycosylation β-Galactosidase FISH Short-chain fatty acids 

Notes

Acknowledgments

We thank Ramiro Martínez (Novozymes A/S, Madrid, Spain) for supplying Lactozym and for useful suggestions. Project BIO2010-20508-C04-01 from the Spanish Ministry of Science and Innovation supported this research. B.R.C. was supported by an FPI fellowship.

References

  1. Angus F, Smart S, Shortt C (2007) Prebiotic ingredients with emphasis on galacto-oligosaccharides and fructo-oligosaccharides. In: Tamime AY (ed) Probiotic dairy products. Wiley-Blackwell, New York, pp 120–137Google Scholar
  2. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661CrossRefGoogle Scholar
  3. Boehm G, Stahl B, Jelinek J, Knol J, Miniello V, Moro GE (2005) Prebiotic carbohydrates in human milk and formulas. Acta Paediatr 94:18–21CrossRefGoogle Scholar
  4. Cardelle-Cobas A, Corzo N, Olano A, Pelaez C, Requena T, Avila M (2011) Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int J Food Microbiol 149:81–87CrossRefGoogle Scholar
  5. Cardelle-Cobas A, Olano A, Corzo N, Villamiel M, Collins M, Kolida S, Rastall RA (2012) In vitro fermentation of lactulose-derived oligosaccharides by mixed fecal microbiota. J Agric Food Chem 60:2024–2032CrossRefGoogle Scholar
  6. Charalampopoulos D, Rastall RA (2009) Prebiotics and probiotics science and technology. Springer, New YorkCrossRefGoogle Scholar
  7. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779CrossRefGoogle Scholar
  8. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. Clin Nutr 16:3–11CrossRefGoogle Scholar
  9. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444CrossRefGoogle Scholar
  10. Depeint F, Tzortzis G, Vulevic J, I'Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–791Google Scholar
  11. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345Google Scholar
  12. Gibson GR (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  13. Gibson GR, Rastall RA (2006) Prebiotics: development and application. Wiley, ChichesterCrossRefGoogle Scholar
  14. Gomez E, Tuohy KM, Gibson GR, Klinder A, Costabile A (2010) In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. J Appl Microbiol 108:2114–2121Google Scholar
  15. Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11:3–12CrossRefGoogle Scholar
  16. Harmsen HJM, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527CrossRefGoogle Scholar
  17. Hernandez O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009) Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J 19:531–536CrossRefGoogle Scholar
  18. Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ (2003) Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 69:4320–4324CrossRefGoogle Scholar
  19. Hsu CA, Lee SL, Chou CC (2007) Enzymatic production of galactooligosaccharides by ß-galactosidase from Lactobacillus pentosus purification characterization and formation of galacto-oligosaccharides from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230CrossRefGoogle Scholar
  20. Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) ß-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416CrossRefGoogle Scholar
  21. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MHF, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075Google Scholar
  22. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344Google Scholar
  23. Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D (2010) ß-Galactosidase from Lactobacillus pentosus purification characterization and formation of galacto-oligosaccharides. J Biotechnol 5:838–847CrossRefGoogle Scholar
  24. Mandalari G, Nueno Palop C, Tuohy K, Gibson GR, Bennett RN, Waldron KW, Bisignano G, Narbad A, Faulds CB (2007) In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl Microbiol Biotechnol 73:1173–1179CrossRefGoogle Scholar
  25. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106CrossRefGoogle Scholar
  26. Martinez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M (2008) Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem 107:258–264CrossRefGoogle Scholar
  27. Martin-Pelaez S, Gibson GR, Martin-Orue SM, Klinder A, Rastall RA, La Ragione RM, Woodward MJ, Costabile A (2008) In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella typhimurium growth in batch culture systems. FEMS Microbiol Ecol 66:608–619CrossRefGoogle Scholar
  28. Matella NJ, Dolan KD, Lee YS (2006) Comparison of galactooligosaccharide production in free-enzyme ultrafiltration and in immobilized-enzyme systems. J Food Sci 71:C363–C368CrossRefGoogle Scholar
  29. Morales V, Sanz ML, Olano A, Corzo N (2006) Rapid separation on activated charcoal of high oligosaccharides in honey. Chromatographia 64:233–238CrossRefGoogle Scholar
  30. Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286CrossRefGoogle Scholar
  31. Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837SGoogle Scholar
  32. Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Ballesteros Olmo AO, Fernandez-Lobato M, Plou FJ (2011) Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: comparative analysis of permeabilized cells versus soluble enzyme. J Agric Food Chem 59:10477–10484CrossRefGoogle Scholar
  33. Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the ß-galactosidase from Bacillus circulans. J Agric Food Chem 60:6391–6398CrossRefGoogle Scholar
  34. Ruiz-Matute AI, Brokl M, Sanz ML, Soria AC, Cote GL, Collins ME, Rastall RA (2011) Effect of dextransucrase cellobiose acceptor products on the growth of human gut bacteria. J Agric Food Chem 59:3693–3700CrossRefGoogle Scholar
  35. Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887CrossRefGoogle Scholar
  36. Sanz ML, Polemis N, Morales V, Corzo N, Drakoularakou A, Gibson GR, Rastall RA (2005a) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921CrossRefGoogle Scholar
  37. Sanz ML, Gibson GR, Rastall RA (2005b) Influence of disaccharide structure on prebiotic selectivity in vitro. J Agric Food Chem 53:5192–5199CrossRefGoogle Scholar
  38. Sarbini SR, Kolida S, Naeye T, Einerhand A, Brison Y, Remaud-Simeon M, Monsan P, Gibson GR, Rastall RA (2011) In vitro fermentation of linear and alpha-1,2-branched dextrans by the human fecal microbiota. Appl Environ Microbiol 77:5307–5315CrossRefGoogle Scholar
  39. Shadid R, Haarman M, Knol J, Theis W, Beermann C, Rjosk-Dendorfer D, Schendel DJ, Koletzko BV, Krauss-Etschmann S (2007) Effects of galactooligosaccharide and long-chain fructooligosaccharide supplementation during pregnancy on maternal and neonatal microbiota and immunity—a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 86:1426–1437Google Scholar
  40. Shen Q, Tuohy KM, Gibson GR, Ward RE (2011) In vitro measurement of the impact of human milk oligosaccharides on the faecal microbiota of weaned formula-fed infants compared to a mixture of prebiotic fructooligosaccharides and galactooligosaccharides. Lett Appl Microbiol 52:337–343CrossRefGoogle Scholar
  41. Splechtna B, Nguyen TH, Steinbock M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4999–5006CrossRefGoogle Scholar
  42. Torres DP, Goncalves M, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci F 9:438–454CrossRefGoogle Scholar
  43. Tzortzis G, Vulevic J (2009) Galacto-oligosaccharide prebiotics. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York, pp 207–244CrossRefGoogle Scholar
  44. Urrutia P, Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes A, Plou FJ (2013) A detailed analysis of galactooligosaccharides synthesis with ß-galactosidase from Aspergillus oryzae. J Agric Food Chem 61:1081–1087CrossRefGoogle Scholar
  45. Vulevic J, Rastall RA, Gibson GR (2004) Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol Lett 236:153–159CrossRefGoogle Scholar
  46. Wang X, Gibson GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Microbiol 75:373–380CrossRefGoogle Scholar
  47. Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA 108:4653–4658CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Barbara Rodriguez-Colinas
    • 1
  • Sofia Kolida
    • 2
  • Magdalena Baran
    • 2
  • Antonio O. Ballesteros
    • 1
  • Robert A. Rastall
    • 2
  • Francisco J. Plou
    • 1
    • 3
    Email author
  1. 1.Instituto de Catalisis y PetroleoquimicaCSICMadridSpain
  2. 2.Department of Food and Nutritional SciencesUniversity of ReadingReadingUK
  3. 3.Departamento de Biocatálisis, Instituto de Catálisis y PetroleoquímicaCSICMadridSpain

Personalised recommendations