Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7297–7306 | Cite as

Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential

  • Amedea Perfumo
  • Michelle Rudden
  • Thomas J. P. Smyth
  • Roger Marchant
  • Paul S. Stevenson
  • Neil J. Parry
  • Ibrahim M. BanatEmail author
Applied genetics and molecular biotechnology

Abstract

A range of isolates of Pseudomonas aeruginosa from widely different environmental sources were examined for their ability to synthesise rhamnolipid biosurfactants. No significant differences in the quantity or composition of the rhamnolipid congeners could be produced by manipulating the growth conditions. Sequences for the rhamnolipid genes indicated low levels of strain variation, and the majority of polymorphisms did lead to amino acid sequence changes that had no evident phenotypic effect. Expression of the rhlB and rhlC rhamnosyltransferase genes showed a fixed sequential expression pattern during growth, and no significant up-regulation could be induced by varying producer strains or growth media. The results indicated that rhamnolipids are highly conserved molecules and that their gene expression has a rather stringent control. This leaves little opportunity to manipulate and greatly increase the yield of rhamnolipids from strains of P. aeruginosa for biotechnological applications.

Keywords

Rhamnolipids Biosurfactants Pseudomonas aeruginosa Bioreactor Comparative gene analysis Gene expression 

Notes

Acknowledgments

We thank Prof James Dooley at the University of Ulster for providing the clinical strains used in this study. A.P. is grateful to Dr. Urs Ochsner for his valuable advice at the beginning of this study. This work was supported by Unilever and the Department of Trade and Industry technology programme and a CAST award from the Department of Education and Learning Northern Ireland and Unilever to Michelle Rudden.

References

  1. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  2. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508PubMedCrossRefGoogle Scholar
  3. Banat IM, Samarah N, Murad M, Horne R, Banerjee S (1991) Biosurfactant production and use in oil tank cleanup. World J Microbiol Biotechnol 7:80–88CrossRefGoogle Scholar
  4. Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A (2005) Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 253:125–131PubMedCrossRefGoogle Scholar
  5. Betts MJ, Russel RB (2003) Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for geneticists. Wiley-Interscience, New YorkGoogle Scholar
  6. Cabrera-Valladares N, Richardson AP, Olvera C, Treviňo LG, Déziel E, Lépine F, Soberón-Chavez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194PubMedCrossRefGoogle Scholar
  7. Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199PubMedCrossRefGoogle Scholar
  8. Chen ML, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2010a) Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26:17958–17968PubMedCrossRefGoogle Scholar
  9. Chen ML, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2010b) Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 26:18281–18292PubMedCrossRefGoogle Scholar
  10. Chandrasekaran EV, Bemiller JN (1980) Constituent analysis of glycosaminoglycans. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic, New York, pp 89–96Google Scholar
  11. Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW, Moore JE, Elborn SJ, Dooley JSG (2010) Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 10:38–51PubMedCrossRefGoogle Scholar
  12. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa 57RP. Biochim Biophys Acta 31:145–152Google Scholar
  13. Finnan S, Morrissey JP, O’Gara F, Boyd EF (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42:5783–5792PubMedCrossRefGoogle Scholar
  14. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials. In: Ghista DN (ed) Biomedical science, engineering and technology, pp 325–370Google Scholar
  15. Franzetti A, Tamburini E, Banat IM (2010) Applications of biological surface active compounds in remediation technologies. Adv Exp Med Biol 672:121–134PubMedCrossRefGoogle Scholar
  16. Jarvis FG, Johnson MJ (1949) A glycol-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  17. Kiewitz C, Tümmler B (2000) Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution. J Bacteriol 182:3125–3135PubMedCrossRefGoogle Scholar
  18. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32PubMedCrossRefGoogle Scholar
  19. Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163:600–611PubMedCrossRefGoogle Scholar
  20. Maier RM, Soberón-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633PubMedCrossRefGoogle Scholar
  21. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. Appl Microbiol Biotechnol Express 1(1):1–5Google Scholar
  22. Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605PubMedCrossRefGoogle Scholar
  23. Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 11:558–565CrossRefGoogle Scholar
  24. Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256PubMedCrossRefGoogle Scholar
  25. Mikkelsen H, McMullan R, Filloux A (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One 6:e29113. doi: 10.1371/journal.pone.0029113 PubMedCrossRefGoogle Scholar
  26. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515PubMedCrossRefGoogle Scholar
  27. Nitschke M, Costa SG, Contiero J (2005a) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600PubMedCrossRefGoogle Scholar
  28. Nitschke M, Costa SG, Haddad R, Gonḉalves LA, Eberlin MN, Contiero J (2005b) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa B1. Biotechnol Prog 21:1562–1566PubMedCrossRefGoogle Scholar
  29. Perfumo A, Banat IM, Manganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 71:132–138CrossRefGoogle Scholar
  30. Perfumo A, Rancich I, Banat IM (2010) Possibilities and challenges of biosurfactant uses in petroleum industry. In: Sen R (ed) Biosurfactants. Landes Bioscience, Austin, pp 135–145CrossRefGoogle Scholar
  31. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29(9):e45PubMedCrossRefGoogle Scholar
  32. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progress 18:1277–1281CrossRefGoogle Scholar
  33. Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresource Technol 102:6377–6384CrossRefGoogle Scholar
  34. Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids, vol. 5, part 2. In: KN Timmis (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3705–3723Google Scholar
  35. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  37. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects, part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620PubMedCrossRefGoogle Scholar
  38. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576PubMedCrossRefGoogle Scholar
  39. Zhang Y, Miller RM (1994) Effect of a Pseudomonas biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMedGoogle Scholar
  40. Zhu H, Bandara R, Conibear TCR, Thuruthyil SJ, Rice SA, Kjelleberg S, Givskov M, Willcox MDP (2004) Pseudomonas aeruginosa with LasI quorum-sensing deficiency during corneal infection. IOVS 45:1897–1903Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amedea Perfumo
    • 1
  • Michelle Rudden
    • 1
  • Thomas J. P. Smyth
    • 1
  • Roger Marchant
    • 1
  • Paul S. Stevenson
    • 2
  • Neil J. Parry
    • 2
  • Ibrahim M. Banat
    • 1
    Email author
  1. 1.School of Biomedical SciencesUniversity of UlsterColeraineUK
  2. 2.Research and DevelopmentUnileverLiverpoolUK

Personalised recommendations