Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7325–7336 | Cite as

The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability

  • Davide Antoniani
  • Elio Rossi
  • Serena Rinaldo
  • Paola Bocci
  • Marco Lolicato
  • Alessandro Paiardini
  • Nadia Raffaelli
  • Francesca Cutruzzolà
  • Paolo Landini
Applied genetics and molecular biotechnology


In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiological assays developed in an Escherichia coli strain expressing the wspR gene. We found that azathioprine, an immunosuppressive drug used in the treatment of Crohn’s disease, was able to inhibit WspR-dependent c-di-GMP biosynthesis in bacterial cells. However, in vitro enzymatic assays ruled out direct inhibition of WspR DGC activity either by azathioprine or by its metabolic derivative 2-amino-6-mercapto-purine riboside. Azathioprine is an inhibitor of 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase, an enzyme involved in purine biosynthesis, which suggests that inhibition of c-di-GMP biosynthesis by azathioprine may be due to perturbation of intracellular nucleotide pools. Consistent with this hypothesis, WspR activity is abolished in an E. coli purH mutant strain, unable to produce AICAR transformylase. Despite its effect on WspR, azathioprine failed to prevent biofilm formation by P. aeruginosa; however, it affected production of extracellular structures in E. coli clinical isolates, suggesting efficient inhibition of c-di-GMP biosynthesis in this bacterium. Our results indicate that azathioprine can prevent biofilm formation in E. coli through inhibition of c-di-GMP biosynthesis and suggest that such inhibition might contribute to its anti-inflammatory activity in Crohn’s disease.


c-di-GMP Diguanylate cyclase Biofilm formation Antimetabolite drugs Crohn’s disease Azathioprine 



We thank Grant Burgess and Flavio Caprioli for a critical reading of the manuscript, Urs Jenal and Holger Sondermann for providing the plasmids for PleD, WspR, and RocR overexpression, and Silvia Fernicola for help with the in vitro inhibition studies. Funding for this study was provided by the Italian Foundation for Research on Cystic Fibrosis (project FFC#13/2009, with the contribution of Delegazione Novara and Delegazione Cosenza-2), by the CHEM-PROFARMA-NET Research Program (Project RBPR05NWWC_004), and PRIN/FIRB Research Programs (Projects 20094BJ9R7 and RBFR10LHD1) of the Italian Ministry for University and Research.

Supplementary material

253_2013_4875_MOESM1_ESM.pdf (570 kb)
ESM 1 (PDF 569 kb)


  1. Absah I, Faubion WA Jr (2012) Concomitant therapy with methotrexate and anti-TNF-α in pediatric patients with refractory Crohn's colitis: a case series. Inflamm Bowel 18:1488–1492CrossRefGoogle Scholar
  2. Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104PubMedCrossRefGoogle Scholar
  3. Attila C, Ueda A, Wood TK (2009) 5-fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl Microbiol Biotecnol 82:525–533CrossRefGoogle Scholar
  4. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008PubMedCrossRefGoogle Scholar
  5. Baraquet C, Murakami K, Parsek MR, Harwood CS (2012) The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40:7207–7218PubMedCrossRefGoogle Scholar
  6. Bardonnet N, Blanco C (1992) uidA antibiotic resistance cassettes for insertion mutagenesis, gene fusion and genetic constructions. FEMS Microbiol Lett 93:243–248Google Scholar
  7. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW (2007) Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME J 1:403–418PubMedCrossRefGoogle Scholar
  8. Blattner FR, Plumkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474PubMedCrossRefGoogle Scholar
  9. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–116PubMedCrossRefGoogle Scholar
  10. Brouillette E, Hyodo M, Hayakawa Y, Karaolis DK, Malouin F (2005) 3′,5′-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob Agents Chemother 49:3109–3113PubMedCrossRefGoogle Scholar
  11. Buckstein MH, He J, Rubin H (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190:718–726PubMedCrossRefGoogle Scholar
  12. Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; 7th edn. Approved standard M7-A7. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  13. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  14. Cotter PA, Stibitz S (2007) C-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23PubMedCrossRefGoogle Scholar
  15. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–421PubMedCrossRefGoogle Scholar
  16. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645PubMedCrossRefGoogle Scholar
  17. De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6:e67PubMedCrossRefGoogle Scholar
  18. Deighton C, O'Mahony R, Tosh J, Turner C, Rudolf M, Guideline Development Group (2009) Management of rheumatoid arthritis: summary of NICE guidance. BMJ 338:b702PubMedCrossRefGoogle Scholar
  19. Dignass A, Van Assche G, Lindsay JO, Lémann M, Söderholm J, Colombel JF, Danese S, D'Hoore A, Gassull M, Gomollón F, Hommes DW, Michetti P, O'Morain C, Oresland T, Windsor A, Stange EF, Travis SP, European Crohn's and Colitis Organisation (ECCO) (2010) The second European evidence-based consensus on the diagnosis and management of Crohn's disease: current management. J Crohns Colitis 4:28–62PubMedCrossRefGoogle Scholar
  20. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175PubMedCrossRefGoogle Scholar
  21. Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82:327–341PubMedCrossRefGoogle Scholar
  22. Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL (2012) Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J Bacteriol 194:914–924PubMedCrossRefGoogle Scholar
  23. Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567PubMedCrossRefGoogle Scholar
  24. Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS One 7:e31252PubMedCrossRefGoogle Scholar
  25. Gray PM, Forrest G, Wisniewski T, Porter G, Freed DC, DeMartino JA, Zaller DM, Guo Z, Leone J, Fu TM, Vora KA (2012) Evidence for cyclic diguanylate as a vaccine adjuvant with novel immunostimulatory activities. Cell Immunol 278:113–119PubMedCrossRefGoogle Scholar
  26. Gualdi L, Tagliabue L, Bertagnoli S, Ieranò T, De Castro C, Landini P (2008) Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154:2017–2024PubMedCrossRefGoogle Scholar
  27. Ha T, Morgan SL, Vaughn WH, Eto I, Baggott JA (1990) Detection of inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase by thioinosinic acid and azathioprine by a new colorimetric assay. Biochem J 272:339–342PubMedGoogle Scholar
  28. Hammer BK, Bassler BL (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191:169–177PubMedCrossRefGoogle Scholar
  29. Haussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551PubMedCrossRefGoogle Scholar
  30. Hayakawa Y, Reiko N, Hirata A, Hyodoa M, Kawaia R (2003) A facile synthesis of cyclic bis(3′→5′)diguanylic acid. Tetrahedron 59:6465–6471CrossRefGoogle Scholar
  31. Hermon-Taylor J (2009) Mycobacterium avium subspecies paratuberculosis, Crohn's disease and the Doomsday scenario. Gut Pathog 1:15PubMedCrossRefGoogle Scholar
  32. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389PubMedCrossRefGoogle Scholar
  33. Holland LM, O'Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR, Fey PD, Gomelsky M, O'Gara JP (2008) A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 190:5178–5189PubMedCrossRefGoogle Scholar
  34. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469PubMedCrossRefGoogle Scholar
  35. Kader A, Simm R, Gerstel U, Morr M, Römling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616PubMedCrossRefGoogle Scholar
  36. Karaolis DK, Means TK, Yang D, Takahashi M, Yoshimura T, Muraille E, Philpott D, Schroeder JT, Hyodo M, Hayakawa Y, Talbot BG, Brouillette E, Malouin F (2007) Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178:2171–2181PubMedGoogle Scholar
  37. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621PubMedCrossRefGoogle Scholar
  38. Krishnan MY, Manning EJ, Collins MT (2009) Effects of interactions of antibacterial drugs with each other and with 6-mercaptopurine on in vitro growth of Mycobacterium avium subspecies paratuberculosis. J Antimicrob Chemother 64:1018–1023PubMedCrossRefGoogle Scholar
  39. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103:2839–2844PubMedCrossRefGoogle Scholar
  40. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339PubMedCrossRefGoogle Scholar
  41. Levesque BG, Kane SV (2011) Searching for the delta: 5-aminosalicylic acid therapy for Crohn's disease. Gastroenterol Hepatol (NY) 7:295–301Google Scholar
  42. Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13:3128–3138PubMedCrossRefGoogle Scholar
  43. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727PubMedCrossRefGoogle Scholar
  44. Paul R, Abel S, Wassmann P, Beck A, Heerklotz H, Jenal U (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282:29170–29177PubMedCrossRefGoogle Scholar
  45. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38:128–139PubMedCrossRefGoogle Scholar
  46. Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–3316PubMedCrossRefGoogle Scholar
  47. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553PubMedCrossRefGoogle Scholar
  48. Robbe-Saule V, Jaumouille V, Prevost MC, Guadagnini S, Talhouarne C, Mathout H, Kolb A, Norel F (2006) Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 188:3983–3994PubMedCrossRefGoogle Scholar
  49. Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 2:218–228CrossRefGoogle Scholar
  50. Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561PubMedCrossRefGoogle Scholar
  51. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314PubMedCrossRefGoogle Scholar
  52. Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211PubMedCrossRefGoogle Scholar
  53. Shang F, Xue T, Sun H, Xing L, Zhang S, Yang Z, Zhang L, Sun B (2009) The Staphylococcus aureus GGDEF domain-containing protein, GdpS, influences protein A gene expression in a cyclic diguanylic acid-independent manner. Infect Immun 77:2849–2856PubMedCrossRefGoogle Scholar
  54. Shin SJ, Collins MT (2008) Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother 52:418–426PubMedCrossRefGoogle Scholar
  55. Simm R, Fetherston JD, Kader A, Römling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823PubMedCrossRefGoogle Scholar
  56. Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R (2009) Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155:1318–1331PubMedCrossRefGoogle Scholar
  57. Spangler C, Kaever V, Seifert R (2011) Interaction of the diguanylate cyclase YdeH of Escherichia coli with 2′,(3′)-substituted purine and pyrimidine nucleotides. J Pharmacol Exp Ther 336:234–241PubMedCrossRefGoogle Scholar
  58. Steiner S, Lori C, Boehm A, Jenal U (2012) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32:354–368PubMedCrossRefGoogle Scholar
  59. Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124PubMedCrossRefGoogle Scholar
  60. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  61. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413PubMedCrossRefGoogle Scholar
  62. Tagliabue L, Antoniani D, Maciąg A, Bocci P, Raffaelli N, Landini P (2010) The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. Microbiol 156:2901–2911CrossRefGoogle Scholar
  63. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148PubMedCrossRefGoogle Scholar
  64. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H, Galle PR, Ahmadian MR, Neurath MF (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111:1133–1145PubMedGoogle Scholar
  65. Ueda A, Attila C, Whiteley M, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microbial Biotech 2:62–74CrossRefGoogle Scholar
  66. Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483PubMedCrossRefGoogle Scholar
  67. Wang X, Lünsdorf H, Ehrén I, Brauner A, Römling U (2010) Characteristics of biofilms from urinary tract catheters and presence of biofilm-related components in Escherichia coli. Curr Microbiol 60:446–453PubMedCrossRefGoogle Scholar
  68. Wassmann P, Chan C, Paul R, Beck A, Heerklotz H, Jenal U, Schirmer T (2007) Structure of BeF3−–modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15:915–927Google Scholar
  69. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034PubMedCrossRefGoogle Scholar
  70. Wermuth GC (2006) Selective optimization of side activities: the SOSA approach. Drug Discov Today 11:160–164PubMedCrossRefGoogle Scholar
  71. Whitney JC, Howell PL (2012) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol. 2012. doi:  10.1016/j.tim.2012.10.001
  72. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Davide Antoniani
    • 1
  • Elio Rossi
    • 1
  • Serena Rinaldo
    • 2
    • 3
  • Paola Bocci
    • 4
  • Marco Lolicato
    • 1
  • Alessandro Paiardini
    • 3
  • Nadia Raffaelli
    • 4
  • Francesca Cutruzzolà
    • 2
    • 3
  • Paolo Landini
    • 1
  1. 1.Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
  2. 2.Istituto Pasteur-Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
  3. 3.Department of Biochemical SciencesSapienza University of RomeRomeItaly
  4. 4.Department of Agricultural, Food and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations