Applied Microbiology and Biotechnology

, Volume 97, Issue 11, pp 4701–4712 | Cite as

Genome engineering in actinomycetes using site-specific recombinases

Mini-Review

Abstract

The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.

Keywords

Site-specific recombinases Actinomycetes Genome engineering Heterologous expression 

Notes

Acknowledgments

The work in the laboratory of AL was supported by the BMBF (GenBioCom), DFG (Lu1524/2-1) and ERC (EXPLOGEN) grants.

References

  1. Alexander DC, Devlin DJ, Hewitt DD, Horan AC, Hosted TJ (2003) Development of the Micromonospora carbonacea var. africana ATCC 39149 bacteriophage pMLP1 integrase for site-specific integration in Micromonospora spp. Microbiology 149:2443–2453CrossRefGoogle Scholar
  2. Alexander DC, Rock J, He X, Brian P, Miao V, Baltz RH (2010) Development of a genetic system for combinatorial biosynthesis of lipopeptides in Streptomyces fradiae and heterologous expression of the A54145 biosynthesis gene cluster. Appl Environ Microbiol 76:6877–6887CrossRefGoogle Scholar
  3. Anné J, Wohlleben W, Burkardt HJ, Springer R, Pühler A (1984) Morphological and molecular characterisation of several actinophages isolated from soil which lyse Streptomyces cattleya or Streptomyces venezuelae. J Gen Microbiol 130:2639–2649Google Scholar
  4. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83CrossRefGoogle Scholar
  5. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672CrossRefGoogle Scholar
  6. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49CrossRefGoogle Scholar
  7. Boccard F, Smokvina T, Pernodet JL, Friedmann A, Guérineau M (1989a) Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid 21:59–70CrossRefGoogle Scholar
  8. Boccard F, Smokvina T, Pernodet JL, Friedmann A, Guérineau M (1989b) The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J 8:973–980Google Scholar
  9. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28CrossRefGoogle Scholar
  10. Butler AR, Bate N, Kiehl DE, Kirst HA, Cundliffe E (2002) Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. Nat Biotechnol 20:713–716CrossRefGoogle Scholar
  11. Chater KF, Carter AT (1979) A new, broad host-range, temperate bacteriophage (R4) of Streptomyces and its interaction with some restriction-modification systems. J Gen Microbiol 115:431–442CrossRefGoogle Scholar
  12. Chen L, Woo SL (2005) Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci USA 102:15581–15586CrossRefGoogle Scholar
  13. Chen L, Woo SL (2008) Site-specific transgene integration in the human genome catalyzed by phiBT1 phage integrase. Hum Gene Ther 19:143–151CrossRefGoogle Scholar
  14. Chompoosri J, Fraser T, Rongsriyam Y, Komalamisra N, Siriyasatien P, Thavara U, Tawatsin A, Fraser MJ Jr (2009) Intramolecular integration assay validates integrase phiC31 and R4 potential in a variety of insect cells. Southeast Asian J Trop Med Public Health 40:1235–1253Google Scholar
  15. Combes P, Till R, Bee S, Smith MC (2002) The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol 184:5746–5752CrossRefGoogle Scholar
  16. Dangel V, Westrich L, Smith MC, Heide L, Gust B (2010) Use of an inducible promoter for antibiotic production in a heterologous host. Appl Microbiol Biotechnol 87:261–269CrossRefGoogle Scholar
  17. Enríquez LL, Mendes MV, Antón N, Tunca S, Guerra SM, Martín JF, Aparicio JF (2006) An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol Lett 257:312–318CrossRefGoogle Scholar
  18. Eustaquio AS, Gust B, Galm U, Li SM, Chater KF, Heide L (2005) Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71:2452–2459CrossRefGoogle Scholar
  19. Farkašovská J, Godány A (2012) Analysis of the site-specific integration system of the Streptomyces aureofaciens phage μ1/6. Curr Microbiol 64:226–233CrossRefGoogle Scholar
  20. Farkasovská J, Klucar L, Vlcek C, Kokavec J, Godány A (2007) Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6. Folia Microbiol 52:347–358CrossRefGoogle Scholar
  21. Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A (2008a) Marker removal from actinomycetes genome using FLP recombinase. Gene 419:43–47CrossRefGoogle Scholar
  22. Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008b) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78:1065–1070CrossRefGoogle Scholar
  23. Flinspach K, Westrich L, Kaysser L, Siebenberg S, Gomez-Escribano JP, Bibb M, Gust B, Heide L (2010) Heterologous expression of the biosynthetic gene clusters of coumermycin A(1), clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 93:823–832CrossRefGoogle Scholar
  24. Galm U, Wang L, Wendt-Pienkowski E, Yang R, Liu W, Tao M, Coughlin JM, Shen B (2008) In vivo manipulation of the bleomycin biosynthetic gene cluster in Streptomyces verticillus ATCC15003 revealing new insights into its biosynthetic pathway. J Biol Chem 283:28236–28245CrossRefGoogle Scholar
  25. Gregory MA, Till R, Smith MC (2003) Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323CrossRefGoogle Scholar
  26. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000CrossRefGoogle Scholar
  27. Ha HS, Hwang YI, Choi SU (2008) Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol Lett 30:1233–1238CrossRefGoogle Scholar
  28. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombinase strategies for engineering actinomycetes genome. Appl Environ Microbiol 78:1804–1812CrossRefGoogle Scholar
  29. Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V (2012) Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus. World J Microbiol Biotechnol 28:2095–2100CrossRefGoogle Scholar
  30. Ichinose K, Taguchi T, Bedford DJ, Ebizuka Y, Hopwood DA (2001) Functional complementation of pyran ring formation in actinorhodin biosynthesis in Streptomyces coelicolor A3(2) by ketoreductase genes for granaticin biosynthesis. J Bacteriol 183:3247–3250CrossRefGoogle Scholar
  31. Jewett MC, Forster AC (2010) Update on disigning and building minimal cells. Curr Opin Biotechnol 21:697–703CrossRefGoogle Scholar
  32. Jiang J, Tetzlaff CN, Takamatsu S, Iwatsuki M, Komatsu M, Ikeda H, Cane DE (2009) Genome mining in Streptomyces avermitilis: a biochemical Baeyer–Villiger reaction and discovery of a new branch of the pentalenolactone family tree. Biochemistry 48:6431–6440CrossRefGoogle Scholar
  33. Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, Smith MC (2006) Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res 34:e20CrossRefGoogle Scholar
  34. Kim MK, Ha HS, Choi SU (2008) Conjugal transfer using the bacteriophage phiC31 att/int system and properties of the attB site in Streptomyces ambofaciens. Biotechnol Lett 30:695–699CrossRefGoogle Scholar
  35. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651CrossRefGoogle Scholar
  36. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204Google Scholar
  37. Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage phiC31. J Mol Biol 222:897–908CrossRefGoogle Scholar
  38. Kuhstoss S, Richardson MA, Rao RN (1989) Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol 171:16–23Google Scholar
  39. Kuhstoss S, Richardson MA, Rao RN (1991) Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146CrossRefGoogle Scholar
  40. Leibig M, Krismer B, Kolb M, Friede A, Götz F, Bertram R (2008) Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol 74:1316–1323CrossRefGoogle Scholar
  41. Li X, Zhou X, Deng Z (2003) Vector systems allowing efficient autonomous or integrative gene cloning in Micromonospora sp. strain 40027. Appl Environ Microbiol 69:3144–3151CrossRefGoogle Scholar
  42. Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2010) Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 9:6CrossRefGoogle Scholar
  43. Liu H, Jiang H, Haltli B, Kulowski K, Muszynska E, Feng X, Summers M, Young M, Graziani E, Koehn F, Carter GT, He M (2009) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC. J Nat Prod 72:389–395CrossRefGoogle Scholar
  44. Liu G, Ou HY, Wang T, Li L, Tan H, Zhou X, Rajakumar K, Deng Z, He X (2010) Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet 6:e1001253CrossRefGoogle Scholar
  45. Lomovskaya ND, Emeljanova LK, Alikhanian SI (1971) The genetic location of the prophage on Streptomyces coelicolor A3(2) chromosome. Genetics 68:341–347Google Scholar
  46. Luzhetskiĭ AN, Ostash BE, Fedorenko VA (2001) Interspecies conjugation of Escherichia coliStreptomyces globisporus 1912 using integrative plasmid pSET152 and its derivatives. Genetika 37:1340–1347Google Scholar
  47. Luzhetskyy A, Mayer A, Hoffmann J, Pelzer S, Holzenkämper M, Schmitt B, Wohlert SE, Vente A, Bechthold A (2007) Cloning and heterologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase. ChemBioChem 8:599–602CrossRefGoogle Scholar
  48. Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33:1062–1067Google Scholar
  49. Matsuura M, Noguchi T, Yamaguchi D, Aida T, Asayama M, Takahashi H, Shirai M (1996) The sre gene (ORF469) encodes a site-specific recombinase responsible for integration of the R4 phage genome. J Bacteriol 178:3374–3376Google Scholar
  50. Miura T, Hosaka Y, Yan-Zhuo Y, Nishizawa T, Asayama M, Takahashi H, Shirai M (2011) In vivo and in vitro characterization of site-specific recombination of actinophage R4 integrase. J Gen Appl Microbiol 57:45–57CrossRefGoogle Scholar
  51. Morita K, Yamamoto T, Fusada N, Komatsu M, Ikeda H, Hirano N, Takahashi H (2009a) The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett 297:234–240CrossRefGoogle Scholar
  52. Morita K, Yamamoto T, Fusada N, Komatsu M, Ikeda H, Hirano N, Takahashi H (2009b) In vitro characterization of the site-specific recombination system based on actinophage TG1 integrase. Mol Genet Genomics 282:607–616CrossRefGoogle Scholar
  53. Morita K, Morimura K, Fusada N, Komatsu M, Ikeda H, Hirano N, Takahashi H (2012) Site-specific genome integration in alphaproteobacteria mediated by TG1 integrase. Appl Microbiol Biotechnol 93:295–304CrossRefGoogle Scholar
  54. Myronovskyy M, Ostash B, Ostash I, Fedorenko V (2009) A gene cloning system for the siomycin producer Streptomyces producer Streptomyces sioyaensis NRRL-B5408. Folia Microbiol 54:91–96CrossRefGoogle Scholar
  55. Novakova R, Kutas P, Feckova L, Kormanec J (2010) The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 156:2374–2383CrossRefGoogle Scholar
  56. Olivares EC, Hollis RP, Calos MP (2001) Phage R4 integrase mediates site-specific integration in human cells. Gene 278:167–176CrossRefGoogle Scholar
  57. Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14:257–267CrossRefGoogle Scholar
  58. Ostash B, Makitrinskyy R, Walker S, Fedorenko V (2009) Identification and characterization of Streptomyces ghanaensis ATCC14672 integration sites for three actinophage-based plasmids. Plasmid 61:171–175CrossRefGoogle Scholar
  59. Paranthaman S, Dharmalingam K (2003) Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl Environ Microbiol 69:84–91CrossRefGoogle Scholar
  60. Penn J, Li X, Whiting A, Latif M, Gibson T, Silva CJ, Brian P, Davies J, Miao V, Wrigley SK, Baltz RH (2006) Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 33:121–128CrossRefGoogle Scholar
  61. Rajeev L, Malanowska K, Gardner JF (2009) Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300–309CrossRefGoogle Scholar
  62. Raynal A, Tuphile K, Gerbaud C, Luther T, Guérineau M, Pernodet JL (1998) Structure of the chromosomal insertion site for pSAM2: functional analysis in Escherichia coli. Mol Microbiol 28:333–342CrossRefGoogle Scholar
  63. Raynal A, Friedmann A, Tuphile K, Guerineau M, Pernodet JL (2002) Characterisation of the attP site of the integrative element pSAM2 from Streptomyces ambofaciens. Microbiology 148:61–67Google Scholar
  64. Raynal A, Karray F, Tuphile K, Darbon-Rongère E, Pernodet JL (2006) Excisable cassettes: new tools for functional analysis of Streptomyces genomes. Appl Environ Microbiol 72:4839–4844CrossRefGoogle Scholar
  65. Rodriguez E, Ward S, Fu H, Revill WP, McDaniel R, Katz L (2004) Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae. Appl Microbiol Biotechnol 66:85–91CrossRefGoogle Scholar
  66. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095CrossRefGoogle Scholar
  67. Schweizer HP (2003) Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J Mol Microbiol Biotechnol 5:67–77Google Scholar
  68. Sekurova ON, Brautaset T, Sletta H, Borgos SE, Jakobsen MØM, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354CrossRefGoogle Scholar
  69. Seoane A, Navas J, García Lobo JM (1997) Targets for pSAM2 integrase mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiology 143:3375–3380CrossRefGoogle Scholar
  70. Sezonov G, Duchêne AM, Friedmann A, Guérineau M, Pernodet JL (1998) Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol 180:3056–3061Google Scholar
  71. Smith MC, Till R, Smith MC (2004) Switching the polarity of a bacteriophage integration system. Mol Microbiol 51:1719–1728CrossRefGoogle Scholar
  72. Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guérineau M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59CrossRefGoogle Scholar
  73. Stinchi S, Azimonti S, Donadio S, Sosio M (2003) A gene transfer system for the glycopeptide producer Nonomuraea sp. ATCC39727. FEMS Microbiol Lett 225:53–57CrossRefGoogle Scholar
  74. Suzuki N, Tsuge Y, Inui M, Yukawa H (2005) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67:225–233CrossRefGoogle Scholar
  75. Thomason LC, Calendar R, Ow DW (2001) Gene insertion replacement in Schizosaccharomyces pombe mediated by Streptomyces bacteriophage phiC31 site-specific recombination system. Mol Genet Genomics 265:1031–1038CrossRefGoogle Scholar
  76. Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinases of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510CrossRefGoogle Scholar
  77. Van Mellaert L, Mei L, Lammertyn E, Schacht S, Anné J (1998) Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144:3351–3358CrossRefGoogle Scholar
  78. Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162:47–52CrossRefGoogle Scholar
  79. Wang SB, Cantlay S, Nordberg N, Letek M, Gil JA, Flärdh K (2009) Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor. FEMS Microbiol Lett 297:101–109CrossRefGoogle Scholar
  80. Zelyas N, Tahlan K, Jensen SE (2009) Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp. Gene 443:48–54CrossRefGoogle Scholar
  81. Zhang L, Ou X, Zhao G, Ding X (2008) Highly efficient in vitro site-specific recombination system based on streptomyces phage phiBT1 integrase. J Bacteriol 190:6392–6397CrossRefGoogle Scholar
  82. Zhang L, Wang L, Wang J, Ou X, Zhao G, Ding X (2010) DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination. J Mol Cell Biol 2:264–275CrossRefGoogle Scholar
  83. Zhang L, Zhao G, Ding X (2011) Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. Sci Rep 1:141Google Scholar
  84. Zhao C, Huang T, Chen W, Deng Z (2010) Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl Environ Microbiol 76:7343–7347CrossRefGoogle Scholar
  85. Zhou X, Wu H, Li Z, Zhou X, Bai L, Deng Z (2011) Over-expression of UDP-glucose pyrophosphorlyase increases validamycin A but decreases validoxylamine A production in Streptomyces hagroscopicus var. jinggangensis 5008. Metab Eng 13:768–776CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Helmholtz-Institute for Pharmaceutical Research SaarlandSaarbrückenGermany

Personalised recommendations