Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 15, pp 6883–6893 | Cite as

Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains

  • Yipeng Wang
  • Ka-Yiu San
  • George N. BennettEmail author
Applied genetics and molecular biotechnology

Abstract

NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2-haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6-phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis.

Keywords

PFK NADPH bioavailability pfkA pfkB G6PDH E. coli 

Notes

Acknowledgement

This work was supported in part by National Science Foundation CBET0828516. Y. Wang was partially supported by a postdoctoral fellowship from the HHMI Beyond Traditional Borders program and by a John S. Dunn Foundation Collaborative Research Award. The authors want to thank Prof. Kurata for providing plasmid pET101-D-topo-CAA43 and Prof. Benning for the gift of pASK-IBA3-G6PD1.

References

  1. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–164. doi: 10.1016/j.ymben.2004.12.003 PubMedCrossRefGoogle Scholar
  2. Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616. doi: 10.1038/nbt1083 Google Scholar
  3. Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26(2):361–371. doi: 10.1002/btpr.345 Google Scholar
  4. Chemler JA, Fowler ZL, McHugh KP, Koffas MA (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12(2):96–104. doi: 10.1016/j.ymben.2009.07.003 PubMedCrossRefGoogle Scholar
  5. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333–341. doi: 10.1002/btpr.559 PubMedCrossRefGoogle Scholar
  6. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102(1):209–220. doi: 10.1002/bit.22060 PubMedCrossRefGoogle Scholar
  7. Cunningham FX, Jr., Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6(8):1107–1121. doi: 10.1105/tpc.6.8.1107 Google Scholar
  8. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17(1):57–61. doi: 10.1021/bp000137t PubMedCrossRefGoogle Scholar
  9. Kim S, Lee CH, Nam SW, Kim P (2011a) Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Lett Appl Microbiol 52(5):433–440. doi: 10.1111/j.1472-765X.2011.03013.x PubMedCrossRefGoogle Scholar
  10. Kim YM, Cho HS, Jung GY, Park JM (2011b) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941–2946. doi: 10.1002/bit.23259 PubMedCrossRefGoogle Scholar
  11. Kurata A, Kurihara T, Kamachi H, Esaki N (2005) 2-Haloacrylate reductase, a novel enzyme of the medium chain dehydrogenase/reductase superfamily that catalyzes the reduction of a carbon-carbon double bond of unsaturated organohalogen compounds. J Biol Chem 280(21):20286–20291. doi: 10.1074/jbc.M414605200 PubMedCrossRefGoogle Scholar
  12. Kurata A, Fujita M, Mowafy AM, Kamachi H, Kurihara T, Esaki N (2008) Production of (S)-2-chloropropionate by asymmetric reduction of 2-chloroacrylate with 2-haloacrylate reductase coupled with glucose dehydrogenase. J Biosci Bioeng 105(4):429–431. doi: 10.1263/jbb.105.429 Google Scholar
  13. Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76(2):329–338. doi: 10.1007/s00253-007-1016-7 PubMedCrossRefGoogle Scholar
  14. Lovingshimer MR, Siegele D, Reinhart GD (2006) Construction of an inducible, pfkA and pfkB deficient strain of Escherichia coli for the expression and purification of phosphofructokinase from bacterial sources. Protein Expr Purif 46(2):475–482. doi: 10.1016/j.pep.2005.09.015 PubMedCrossRefGoogle Scholar
  15. Martinez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359. doi: 10.1016/j.ymben.2008.09.001 PubMedCrossRefGoogle Scholar
  16. Phillips GJ, Park SK, Huber D (2000) High copy number plasmids compatible with commonly used cloning vectors. Biotechniques 28(3):400–402, 404, 406 passimGoogle Scholar
  17. Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22(2):420–425. doi: 10.1021/bp050375u PubMedCrossRefGoogle Scholar
  18. Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92(5):929–937. doi: 10.1007/s00253-011-3374-4 PubMedCrossRefGoogle Scholar
  19. Siedler S, Bringer S, Blank LM, Bott M (2012) Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport. Appl Microbiol Biotechnol 93(4):1459–1467. doi: 10.1007/s00253-011-3626-3 PubMedCrossRefGoogle Scholar
  20. Vinopal RT, Clifton D, Fraenkel DG (1975) PfkA locus of Escherichia coli. J Bacteriol 122(3):1162–1171PubMedGoogle Scholar
  21. Wakao S, Benning C (2005) Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis. Plant J 41(2):243–256. doi: 10.1111/j.1365-313X.2004.02293.x PubMedCrossRefGoogle Scholar
  22. Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20(2):403–411. doi: 10.1021/bp030044m PubMedCrossRefGoogle Scholar
  23. Yoon KW, Doo EH, Kim SW, Park JB (2008) In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli. J Biotechnol 135(3):291–294. doi: 10.1016/j.jbiotec.2008.04.001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Cell Biology, MS-140Rice UniversityHoustonUSA
  2. 2.Department of BioengineeringRice UniversityHoustonUSA
  3. 3.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA

Personalised recommendations