Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 10, pp 4243–4258 | Cite as

Biofabrication: an overview of the approaches used for printing of living cells

  • Cameron J. Ferris
  • Kerry G. Gilmore
  • Gordon G. Wallace
  • Marc in het PanhuisEmail author
Mini-Review

Abstract

The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.

Keywords

Biofabrication Inkjet printing Cells Hydrogels Cell printing 

Notes

Acknowledgments

The University of Wollongong and the Australian Research Council (Centre of Excellence, Laureate and Future Fellowship programs) are thanked for their support.

References

  1. Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–6. doi: 10.1038/nbt981 CrossRefGoogle Scholar
  2. Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R (2005) Biomaterial microarrays: rapid, microscale screening of polymer–cell interaction. Biomaterials 26:4892–7. doi: 10.1016/j.biomaterials.2004.11.052 CrossRefGoogle Scholar
  3. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3:034113. doi: 10.1088/1758-5082/3/3/034113 CrossRefGoogle Scholar
  4. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004a) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdev 6:139–47CrossRefGoogle Scholar
  5. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004b) Application of laser printing to mammalian cells. Thin Solid Films 453–454:383–387. doi: 10.1016/j.tsf.2003.11.161 CrossRefGoogle Scholar
  6. Barron JA, Krizman DB, Ringeisen BR (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130. doi: 10.1007/s10439-005-8971-x CrossRefGoogle Scholar
  7. Di Biase M, Saunders RE, Tirelli N, Derby B (2011) Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter 7:2639. doi: 10.1039/c0sm00996b CrossRefGoogle Scholar
  8. Binder KW, Allen AJ, Yoo JJ, Atala A (2011) Drop-on-demand inkjet bioprinting: a primer. Gene Ther Reg 06:33. doi: 10.1142/S1568558611000258 CrossRefGoogle Scholar
  9. Bohandy J, Kim BF, Adrian FJ (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538. doi: 10.1063/1.337287 CrossRefGoogle Scholar
  10. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272:497–502. doi: 10.1002/ar.a.10059 CrossRefGoogle Scholar
  11. Boland T, Tao X, Damon B, Manley B, Kesari P, Jalota S, Bhaduri S (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C 27:372–376. doi: 10.1016/j.msec.2006.05.047 CrossRefGoogle Scholar
  12. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotech J 1:910–7. doi: 10.1002/biot.200600081 CrossRefGoogle Scholar
  13. Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–46. doi: 10.1016/j.biomaterials.2006.09.017 CrossRefGoogle Scholar
  14. Brown MS, Kattamis NT, Arnold CB (2010) Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J Appl Phys 107:083103. doi: 10.1063/1.3327432 CrossRefGoogle Scholar
  15. Burg KJ, Boland T (2003) Minimally invasive tissue engineering composites and cell printing. IEEE Eng Med Biol 22:84–91. doi: 10.1109/MEMB.2003.1256277 CrossRefGoogle Scholar
  16. Burg TC, Cass CAP, Groff R, Pepper ME, Burg KJL (2010) Building off-the-shelf tissue-engineered composites. Philos T Roy Soc A 368:1839–62. doi: 10.1098/rsta.2010.0002 CrossRefGoogle Scholar
  17. Calvert P (2007) Printing cells. Science 318:208–9. doi: 10.1126/science.1144212 CrossRefGoogle Scholar
  18. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7:1123–7. doi: 10.1517/14712598.7.8.1123 CrossRefGoogle Scholar
  19. Catros S, Fricain J-C, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amédée J, Guillemot F (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001. doi: 10.1088/1758-5082/3/2/025001 CrossRefGoogle Scholar
  20. Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, Blitterswijk CV, Rousseau B, Chassande O, Amédée J, Fricain J-C (2012) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng C Meth 18:62–70. doi: 10.1089/ten.TEC.2011.0382 CrossRefGoogle Scholar
  21. Chahal D, Ahmadi A, Cheung KC (2012) Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng 109:2932–40. doi: 10.1002/bit.24562 CrossRefGoogle Scholar
  22. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomat 98:160–70. doi: 10.1002/jbm.b.31831 CrossRefGoogle Scholar
  23. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng A 14:41–8. doi: 10.1089/ten.a.2007.0004 CrossRefGoogle Scholar
  24. Cheng J, Lin F, Liu H, Yan Y, Wang X, Zhang R, Xiong Z (2008) Rheological properties of cell-hydrogel composites extruding through small-diameter tips. J Maunf Sci Eng 130:021014. doi: 10.1115/1.2896215 CrossRefGoogle Scholar
  25. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–7. doi: 10.1016/j.biomaterials.2009.07.056 CrossRefGoogle Scholar
  26. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106:963–9. doi: 10.1002/bit.22762 CrossRefGoogle Scholar
  27. Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7:1428–33. doi: 10.1039/b705809h CrossRefGoogle Scholar
  28. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926. doi: 10.1126/science.1226340 CrossRefGoogle Scholar
  29. Derby B (2009) Applications for ink jet printing in biology and medicine. NIP25: International Conference on Digital Printing Technologies and Digital Fabrication 2009 2–3Google Scholar
  30. Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mat Chem 18:5717. doi: 10.1039/b807560c CrossRefGoogle Scholar
  31. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Ann Rev Mater Res 40:395–414. doi: 10.1146/annurev-matsci-070909-104502 CrossRefGoogle Scholar
  32. Doraiswamy A, Narayan RJ, Harris ML, Qadri SB, Modi R, Chrisey DB (2007) Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res A 80:635–43. doi: 10.1002/jbm.a.30969 Google Scholar
  33. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5 CrossRefGoogle Scholar
  34. Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJA (2011a) Organ printing: the future of bone regeneration? Trends Biotechnol 29:601–6. doi: 10.1016/j.tibtech.2011.07.001 CrossRefGoogle Scholar
  35. Fedorovich NE, Alblas J, Wijn JRDE, Hennink WE, Verbout AJ, Dhert WJA (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-Art and Novel Application in Organ Printing. Tissue Eng 13:1905–1925. doi: 10.1089/ten.2006.0175 CrossRefGoogle Scholar
  36. Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJA, Alblas J (2011b) Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng A 17:2473–86. doi: 10.1089/ten.TEA.2011.0001 CrossRefGoogle Scholar
  37. Fedorovich NE, Schuurman W, Wijnberg HM, Prins H-J, Van Weeren PR, Malda J, Alblas J, Dhert WJA (2011c) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng C Meth. doi: 10.1089/ten.TEC.2011.0060 Google Scholar
  38. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJA (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng A 14:127–33. doi: 10.1089/ten.a.2007.0158 CrossRefGoogle Scholar
  39. Fedorovich NE, Wijnberg HM, Dhert WJA, Alblas J (2011d) Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng A 17:2113–21. doi: 10.1089/ten.TEA.2011.0019 CrossRefGoogle Scholar
  40. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–9. doi: 10.1016/j.tibtech.2009.02.009 CrossRefGoogle Scholar
  41. Fernandes TG, Kwon S, Lee M, Clark DS, Cabral JMS, Dordick JS (2008) On-chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Anal Chem 80:6633–9. doi: 10.1021/ac800848j CrossRefGoogle Scholar
  42. Fernandes TG, Kwon S-J, Bale SS, Lee M-Y, Diogo MM, Clark DS, Cabral JMS, Dordick JS (2010) Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng 106:106–18. doi: 10.1002/bit.22661 Google Scholar
  43. Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224–230. doi: 10.1039/c2bm00114d CrossRefGoogle Scholar
  44. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Meth 2:119–25. doi: 10.1038/nmeth736 CrossRefGoogle Scholar
  45. Forgacs G, Foty RA, Shafrir Y, Steinberg MS (1998) Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74:2227–34. doi: 10.1016/S0006-3495(98)77932-9 CrossRefGoogle Scholar
  46. Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–30. doi: 10.1016/j.biomaterials.2011.08.071 CrossRefGoogle Scholar
  47. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B (2011a) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng C Meth 17:79–87. doi: 10.1089/ten.tec.2010.0359 CrossRefGoogle Scholar
  48. Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A, Chichkov B (2011b) Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions. Tissue Eng C Meth. doi: 10.1089/ten.TEC.2011.0185 Google Scholar
  49. Guillemot F, Guillotin B, Fontaine A, Ali M, Catros S, Kériquel V, Fricain J-C, Rémy M, Bareille R, Amédée-Vilamitjana J (2011) Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull 36:1015–1019. doi: 10.1557/mrs.2011.272 CrossRefGoogle Scholar
  50. Guillemot F, Mironov V, Nakamura M (2010a) Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201. doi: 10.1088/1758-5082/2/1/010201 CrossRefGoogle Scholar
  51. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J (2010b) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomat 6:2494–500. doi: 10.1016/j.actbio.2009.09.029 CrossRefGoogle Scholar
  52. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190. doi: 10.1016/j.tibtech.2010.12.008 CrossRefGoogle Scholar
  53. Hart T, Zhao A, Garg A, Bolusani S, Marcotte EM (2009) Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays. PLoS One 4:e7088. doi: 10.1371/journal.pone.0007088 CrossRefGoogle Scholar
  54. He K, Wang X (2011) Rapid prototyping of tubular polyurethane and cell/hydrogel constructs. J Bioact Compat Pol 26:363–374. doi: 10.1177/0883911511412553 CrossRefGoogle Scholar
  55. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742. doi: 10.1007/s10529-010-0221-0 CrossRefGoogle Scholar
  56. Hurtley S (2009) Location, location, location. Science 326:1205CrossRefGoogle Scholar
  57. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–62. doi: 10.1016/j.tibtech.2004.05.005 CrossRefGoogle Scholar
  58. Jakab K, Neagu A, Mironov V, Forgacs G (2004a) Organ printing: fiction or science. Biorheology 41:371–375Google Scholar
  59. Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G (2004b) Engineering biological structures of prescribed shape using self-assembling multicellular systems. P Natl Acad Sci USA 101:2864–9. doi: 10.1073/pnas.0400164101 CrossRefGoogle Scholar
  60. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng A 14:413–21. doi: 10.1089/tea.2007.0173 CrossRefGoogle Scholar
  61. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001. doi: 10.1088/1758-5082/2/2/022001 CrossRefGoogle Scholar
  62. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S (2009) Vascularization—the conduit to viable engineered tissues. Tissue Eng B Rev 15:159–69. doi: 10.1089/ten.teb.2008.0193 CrossRefGoogle Scholar
  63. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 11:9–17. doi: 10.1108/13552540510573347 CrossRefGoogle Scholar
  64. Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131:111002. doi: 10.1115/1.3128729 CrossRefGoogle Scholar
  65. Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 27:469–478. doi: 10.1016/j.msec.2006.05.023 CrossRefGoogle Scholar
  66. Kim JY, Cho D-W (2009) Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelec Eng 86:1447–1450. doi: 10.1016/j.mee.2008.11.026 CrossRefGoogle Scholar
  67. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–73CrossRefGoogle Scholar
  68. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863. doi: 10.1002/bit.24455 CrossRefGoogle Scholar
  69. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. doi: 10.1021/cr000108x CrossRefGoogle Scholar
  70. Lee M, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS (2008) Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Nat Acad Sci USA 105:59–63. doi: 10.1073/pnas.0708756105 CrossRefGoogle Scholar
  71. Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S (2009a) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–95. doi: 10.1016/j.biomaterials.2008.12.009 CrossRefGoogle Scholar
  72. Lee W, Lee V, Polio S, Keegan P, Lee J, Fischer K, Park J, Yoo S (2010) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnology 105:1178–1186. doi: 10.1002/bit.22613 Google Scholar
  73. Lee W, Pinckney J, Lee V, Lee J-H, Fischer K, Polio S, Park J-K, Yoo S-S (2009b) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20:798–803. doi: 10.1097/WNR.0b013e32832b8be4 CrossRefGoogle Scholar
  74. Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol 9:615–7CrossRefGoogle Scholar
  75. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378. doi: 10.1016/S0142-9612(03)00030-9 CrossRefGoogle Scholar
  76. Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang R (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Pol 24:249–265. doi: 10.1177/0883911509104094 CrossRefGoogle Scholar
  77. Liberski AR, Delaney JT, Schubert US (2011) “One cell-one well”: a new approach to inkjet printing single cell microarrays. ACS Combinat Sci 13:190–5. doi: 10.1021/co100061c CrossRefGoogle Scholar
  78. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng B Rev 15:353–70. doi: 10.1089/ten.TEB.2009.0085 CrossRefGoogle Scholar
  79. Ma Z, Pirlo RK, Wan Q, Yun JX, Yuan X, Xiang P, Borg TK, Gao BZ (2011) Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning. Biofabrication 3:034107. doi: 10.1088/1758-5082/3/3/034107 CrossRefGoogle Scholar
  80. Marga F, Jakab K, Khatiwala C, Shephard B, Dorfman S, Hubbard B, Colbert S, Gabor F (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4:022001. doi: 10.1088/1758-5082/4/2/022001 CrossRefGoogle Scholar
  81. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mat 11:1–7. doi: 10.1038/nmat3357 CrossRefGoogle Scholar
  82. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161. doi: 10.1016/S0167-7799(03)00033-7 CrossRefGoogle Scholar
  83. Mironov V, Prestwich G, Forgacs G (2007) Bioprinting living structures. J Mat Chem 17:2054. doi: 10.1039/b617903g CrossRefGoogle Scholar
  84. Mironov V, Reis N, Derby B (2006) Bioprinting: a beginning. Tissue Eng 12:631–634. doi: 10.1089/ten.2006.12.631 CrossRefGoogle Scholar
  85. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009a) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1:022001. doi: 10.1088/1758-5082/1/2/022001 CrossRefGoogle Scholar
  86. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009b) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–74. doi: 10.1016/j.biomaterials.2008.12.084 CrossRefGoogle Scholar
  87. Moon S, Kim Y-G, Dong L, Lombardi M, Haeggstrom E, Jensen RV, Hsiao L-L, Demirci U (2011) Drop-on-demand single cell isolation and total RNA analysis. PLoS One 6:e17455. doi: 10.1371/journal.pone.0017455 CrossRefGoogle Scholar
  88. Moon SJ, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, Khademhosseini A, Demirci U (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng C Meth 16:157–66. doi: 10.1089/ten.TEC.2009.0179 CrossRefGoogle Scholar
  89. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129–36. doi: 10.1002/bit.20585 CrossRefGoogle Scholar
  90. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4:1168–77. doi: 10.1002/biot.200900004 CrossRefGoogle Scholar
  91. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–66. doi: 10.1089/ten.2005.11.1658 CrossRefGoogle Scholar
  92. Nakamura M, Nishiyama Y, Henmi C, Yamaguchi K (2006) Inkjet bioprinting as an effective tool for tissue fabrication. 2nd International Conference on Digital Fabrication Technologies 89–92Google Scholar
  93. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B Rev 14:149–65. doi: 10.1089/ten.teb.2007.0332 CrossRefGoogle Scholar
  94. Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H, Takiura K (2009) Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng 131:035001. doi: 10.1115/1.3002759 CrossRefGoogle Scholar
  95. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–7. doi: 10.1016/j.biomaterials.2009.06.034 CrossRefGoogle Scholar
  96. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–11. doi: 10.1016/j.addr.2011.03.004 CrossRefGoogle Scholar
  97. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17:385–9. doi: 10.1016/S0167-7799(99)01355-4 CrossRefGoogle Scholar
  98. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol 1–7. doi: 030312–07Google Scholar
  99. Othon CM, Wu X, Anders JJ, Ringeisen BR (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101. doi: 10.1088/1748-6041/3/3/034101 CrossRefGoogle Scholar
  100. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104. doi: 10.1088/1758-5082/2/1/014104 CrossRefGoogle Scholar
  101. Parsa S, Gupta M, Loizeau F, Cheung KC (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2:025003. doi: 10.1088/1758-5082/2/2/025003 CrossRefGoogle Scholar
  102. Parzel CA, Pepper ME, Burg TC, Groff RE, Burg KJL (2009) EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface. J Tiss Eng Reg Med 3:260–8. doi: 10.1002/term.162 CrossRefGoogle Scholar
  103. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Annals Med 40:268–80. doi: 10.1080/07853890701881788 CrossRefGoogle Scholar
  104. Pepper ME, Cass CAP, Mattimore JP, Burg TC, Booth BW, Burg KJL, Groff RE (2010) Post-bioprinting processing methods to improve cell viability and pattern fidelity in heterogeneous tissue test systems. 32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society 2010:259–62. doi:  10.1109/IEMBS.2010.5627467
  105. Pepper ME, Groff RE, Cass CAP, Mattimore JP, Burg T, Burg KJL (2012a) A quantitative metric for pattern fidelity of bioprinted cocultures. Artificial Organs 36:E151–62. doi: 10.1111/j.1525-1594.2012.01460.x CrossRefGoogle Scholar
  106. Pepper ME, Seshadri V, Burg TC, Booth BW, Burg KJL, Groff RE (2011) Cell settling effects on a thermal inkjet bioprinter. 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society 2011:3609–12. doi:  10.1109/IEMBS.2011.6090605
  107. Pepper ME, Seshadri V, Burg TC, Burg KJL, Groff RE (2012b) Characterizing the effects of cell settling on bioprinter output. Biofabrication 4:011001. doi: 10.1088/1758-5082/4/1/011001 CrossRefGoogle Scholar
  108. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–211. doi: 10.1089/ten.2006.12.1197 CrossRefGoogle Scholar
  109. Pirlo RK, Wu P, Liu J, Ringeisen B (2012) PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnol Bioeng 109:262–73. doi: 10.1002/bit.23295 CrossRefGoogle Scholar
  110. Raof NA, Schiele NR, Xie Y, Chrisey DB, Corr DT (2011) The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 32:1802–8. doi: 10.1016/j.biomaterials.2010.11.015 CrossRefGoogle Scholar
  111. Ringeisen BR, Chrisey DB, Piqué A, Young HD, Jones-Meehan J, Modi R, Bucaro M, Spargo BJ (2002) Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23:161–6. doi: 10.1016/S0142-9612(01)00091-6 CrossRefGoogle Scholar
  112. Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10:483–91. doi: 10.1089/107632704323061843 CrossRefGoogle Scholar
  113. Rouwkema J, Rivron NC, Van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–41. doi: 10.1016/j.tibtech.2008.04.009 CrossRefGoogle Scholar
  114. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203. doi: 10.1016/j.biomaterials.2007.09.032 CrossRefGoogle Scholar
  115. Schiele NR, Chrisey DB, Corr DT (2010a) Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng C Meth. doi: 10.1089/ten.TEC.2010.0442 Google Scholar
  116. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB (2010b) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001. doi: 10.1088/1758-5082/2/3/032001 CrossRefGoogle Scholar
  117. Schuurman W, Khristov V, Pot MW, Van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001. doi: 10.1088/1758-5082/3/2/021001 CrossRefGoogle Scholar
  118. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128. doi: 10.1126/science.1214804 CrossRefGoogle Scholar
  119. Shim J-H, Kim JY, Park M, Park J, Cho D-W (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3:034102. doi: 10.1088/1758-5082/3/3/034102 CrossRefGoogle Scholar
  120. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–29. doi: 10.1002/adma.200802106 CrossRefGoogle Scholar
  121. Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng A 13:373–83. doi: 10.1089/ten.2006.0101 CrossRefGoogle Scholar
  122. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng A 10:1566–76. doi: 10.1089/ten.2004.10.1566 Google Scholar
  123. Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ (2006) Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1:976–87. doi: 10.1002/biot.200600123 CrossRefGoogle Scholar
  124. Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47. doi: 10.1042/BA20030108 CrossRefGoogle Scholar
  125. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–47. doi: 10.1016/j.addr.2004.05.001 CrossRefGoogle Scholar
  126. Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10:40–48. doi: 10.1016/S1369-7021(07)70049-4 CrossRefGoogle Scholar
  127. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, Liu F, Lin F, Wu R, Zhang R, Lu Q (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng A 12:83–90. doi: 10.1089/ten.2006.12.83 CrossRefGoogle Scholar
  128. Wang X, Yan Y, Zhang R (2010) Recent trends and challenges in complex organ manufacturing. Tissue Eng B Rev 16:189–97. doi: 10.1089/ten.TEB.2009.0576 CrossRefGoogle Scholar
  129. Wang X, Yan Y, Zhang R (2007) Rapid prototyping as a tool for manufacturing bioartificial livers. Trends Biotechnol 25:505–13. doi: 10.1016/j.tibtech.2007.08.010 CrossRefGoogle Scholar
  130. Wilson WC, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272:491–6. doi: 10.1002/ar.a.10057 CrossRefGoogle Scholar
  131. Wu P, Ringeisen B, Callahan J, Brooks M, Bubb D, Wu H, Piqué A, Spargo B, McGill R, Chrisey D (2001) The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398–399:607–614. doi: 10.1016/S0040-6090(01)01347-5 CrossRefGoogle Scholar
  132. Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomat 2:119–154. doi: 10.3390/jfb2030119 CrossRefGoogle Scholar
  133. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011a) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6:204–12. doi: 10.1002/biot.201000340 CrossRefGoogle Scholar
  134. Xu F, Moon SJ, Emre AE, Turali ES, Song YS, Hacking SA, Nagatomi J, Demirci U (2010) A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2:014105. doi: 10.1088/1758-5082/2/1/014105 CrossRefGoogle Scholar
  135. Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci U (2011b) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3:034101. doi: 10.1088/1758-5082/3/3/034101 CrossRefGoogle Scholar
  136. Xu M, Yan Y, Liu H, Yao R, Wang X (2009a) Controlled adipose-derived stromal cells differentiation into adipose and endothelial cells in a 3D structure established by cell-assembly technique. J Bioact Compat Pol 24:31–47. doi: 10.1177/0883911509102794 CrossRefGoogle Scholar
  137. Xu T, Baicu C, Aho M, Zile M, Boland T (2009b) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 1:035001. doi: 10.1088/1758-5082/1/3/035001 CrossRefGoogle Scholar
  138. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006a) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–8. doi: 10.1016/j.biomaterials.2006.01.048 Google Scholar
  139. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–9. doi: 10.1016/j.biomaterials.2004.04.011 CrossRefGoogle Scholar
  140. Xu T, Kincaid H, Atala A, Yoo JJ (2008a) High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng 130:021017. doi: 10.1115/1.2903064 CrossRefGoogle Scholar
  141. Xu T, Olson J, Zhao W, Atala A, Zhu J-M, Yoo JJ (2008b) Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manuf Sci Eng 130:021013. doi: 10.1115/1.2902857 CrossRefGoogle Scholar
  142. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009c) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng A 15:95–101. doi: 10.1089/ten.tea.2008.0095 CrossRefGoogle Scholar
  143. Xu T, Zhao W, Atala A, Yoo JJ (2006b) Bio-printing of living organized tissues using an inkjet technology. 2nd International Conference on Digital Fabrication Technologies131–134Google Scholar
  144. Xu W, Wang X, Yan Y, Zheng W, Xiong Z, Lin F, Wu R, Zhang R (2007) Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J Bioact Compat Pol 22:363–377. doi: 10.1177/0883911507079451 CrossRefGoogle Scholar
  145. Yan KC, Nair K, Sun W (2010) Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs. J Biomech 43:1031–8. doi: 10.1016/j.jbiomech.2009.12.018 CrossRefGoogle Scholar
  146. Yan Y (2005) Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Pol 20:259–269. doi: 10.1177/0883911505053658 CrossRefGoogle Scholar
  147. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–71. doi: 10.1016/j.biomaterials.2005.02.027 CrossRefGoogle Scholar
  148. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–52. doi: 10.1016/j.tibtech.2004.10.004 CrossRefGoogle Scholar
  149. Zaugg FG, Wagner P (2003) Drop-on-demand printing of protein biochip arrays. MRS Bull 28:837–842. doi: 10.1557/mrs2003.233 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cameron J. Ferris
    • 1
    • 2
  • Kerry G. Gilmore
    • 2
  • Gordon G. Wallace
    • 2
  • Marc in het Panhuis
    • 1
    • 2
    Email author
  1. 1.Soft Materials Group, School of ChemistryUniversity of WollongongWollongongAustralia
  2. 2.Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM FacilityUniversity of WollongongWollongongAustralia

Personalised recommendations