Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7317–7324 | Cite as

A novel locus essential for spreading of Cytophaga hutchinsonii colonies on agar

  • Xiaofei Ji
  • Xinfeng Bai
  • Zhe Li
  • Sen Wang
  • Zhiwei Guan
  • Xuemei LuEmail author
Applied genetics and molecular biotechnology

Abstract

Cytophaga hutchinsonii is an aerobic cellulolytic gliding bacterium. The mechanism of its cell motility over surfaces without flagella and type IV pili is not known. In this study, mariner-based transposon mutagenesis was used to identify a new locus CHU_1797 essential for colony spreading on both hard and soft agar surfaces through gliding. CHU_1797 encodes a putative outer membrane protein of 348 amino acids with unknown function, and proteins which have high sequence similarity to CHU_1797 were widespread in the members of the phylum Bacteroidetes. The disruption of CHU_1797 suppressed spreading toward glucose on an agar surface, but had no significant effect on cellulose degradation for cells already in contact with cellulose. SEM observation showed that the mutant cells also regularly arranged on the surface of cellulose fiber similar with that of the wild type strain. These results indicated that the colony spreading ability on agar surfaces was not required for cellulose degradation by C. hutchinsonii. This was the first study focused on the relationship between cell motility and cellulose degradation of C. hutchinsonii.

Keywords

Cytophaga hutchinsonii Colony spreading Gliding Cellulose degradation 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB707402) and the National Natural Science Foundation of China (31170051 and 30870021). We sincerely thank Dr. Mark J. McBride (University of Wisconsin-Milwaukee, Milwaukee, USA) for providing some of the strains and plasmids. Thanks to Dr. Edward C. Mignot, Shandong University, for linguistic advice.

References

  1. Agarwal S, Hunnicutt DW, McBride MJ (1997) Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 94(22):12139–12144PubMedCrossRefGoogle Scholar
  2. Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA (2006) A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 72(6):4044–4053. doi: 10.1128/AEM.00128-06 PubMedCrossRefGoogle Scholar
  3. Bardy SL, Ng SY, Jarrell KF (2003) Prokaryotic motility structures. Microbiology 149(Pt 2):295–304PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Braun TF, Khubbar MK, Saffarini DA, McBride MJ (2005) Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 187(20):6943–6952. doi: 10.1128/JB.187.20.6943-6952.2005 PubMedCrossRefGoogle Scholar
  6. Chang WT, Thayer DW (1977) The cellulase system of a Cytophaga species. Can J Microbiol 23(9):1285–1292PubMedCrossRefGoogle Scholar
  7. Chen S, Bagdasarian M, Kaufman MG, Walker ED (2007) Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 73(4):1089–1100. doi: 10.1128/AEM.01577-06 PubMedCrossRefGoogle Scholar
  8. Chong L (2001) Molecular cloning—a laboratory manual, 3rd edition. Science 292(5516):446–446CrossRefGoogle Scholar
  9. Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FS (2003) PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31(13):3613–3617. doi: 10.1093/nar/gkg602 PubMedCrossRefGoogle Scholar
  10. Gong J, Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microbiol 55(12):3039–3044PubMedGoogle Scholar
  11. Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96(1):161–170. doi: 10.1007/s00253-012-4051-y PubMedCrossRefGoogle Scholar
  12. Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76(11):5952–5956PubMedCrossRefGoogle Scholar
  13. Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, Shi W (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100(9):5443–5448. doi: 10.1073/pnas.0836639100 PubMedCrossRefGoogle Scholar
  14. Luciano J, Agrebi R, Le Gall AV, Wartel M, Fiegna F, Ducret A, Brochier-Armanet C, Mignot T (2011) Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet 7(9):e1002268. doi: 10.1371/journal.pgen.1002268 PubMedCrossRefGoogle Scholar
  15. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi: 10.1128/MMBR.66.4.739.2002 PubMedCrossRefGoogle Scholar
  16. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75. doi: 10.1146/annurev.micro.55.1.49 PubMedCrossRefGoogle Scholar
  17. McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62(8):3017–3022PubMedGoogle Scholar
  18. McBride MJ, Braun TF (2004) GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J Bacteriol 186(8):2295–2302. doi: 10.1128/JB.186.8.2295-2302.2004 PubMedCrossRefGoogle Scholar
  19. McBride MJ, Zhu Y (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195(2):270–278. doi: 10.1128/JB.01962-12 PubMedCrossRefGoogle Scholar
  20. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75(21):6864–6875. doi: 10.1128/AEM.01495-09 PubMedCrossRefGoogle Scholar
  21. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. doi: 10.1038/nmeth.1701 PubMedCrossRefGoogle Scholar
  22. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107(1):276–281. doi: 10.1073/pnas.0912010107 PubMedCrossRefGoogle Scholar
  23. Shi W, Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90(8):3378–3382PubMedCrossRefGoogle Scholar
  24. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotech 1(9):784–791CrossRefGoogle Scholar
  25. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  26. Stanier RY (1942) The Cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6(3):143–196PubMedGoogle Scholar
  27. Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108(18):7559–7564. doi: 10.1073/pnas.1101101108 PubMedCrossRefGoogle Scholar
  28. Thomas S, Russell JB (2004) The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation. Curr Microbiol 48(3):219–223. doi: 10.1007/s00284-003-4151-0 PubMedCrossRefGoogle Scholar
  29. Uenoyama A, Kusumoto A, Miyata M (2004) Identification of a 349-kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile. J Bacteriol 186:1537–1545. doi: 10.1128/JB.186.5.1537-1545.2004 PubMedCrossRefGoogle Scholar
  30. Walker E, Warren FL (1938) Decomposition of cellulose by Cytophaga. I Biochem J 32(1):31–43Google Scholar
  31. Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16(4):723–727. doi: 10.1007/s10570-009-9326-9 CrossRefGoogle Scholar
  32. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73(11):3536–3546. doi: 10.1128/AEM.00225-07 PubMedCrossRefGoogle Scholar
  33. Xu Y, Ji X, Chen N, Li P, Liu W, Lu X (2011) Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3572-0
  34. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. doi: 10.1093/bioinformatics/btq249 PubMedCrossRefGoogle Scholar
  35. Zhu Y, Zhou H, Bi Y, Zhang W, Chen G, Liu W (2012) Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol. doi: 10.1007/s00253-012-4259-x

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaofei Ji
    • 1
  • Xinfeng Bai
    • 1
  • Zhe Li
    • 1
  • Sen Wang
    • 1
  • Zhiwei Guan
    • 1
  • Xuemei Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial Technology, College of Life ScienceShandong UniversityJinanChina

Personalised recommendations