Applied Microbiology and Biotechnology

, Volume 97, Issue 9, pp 3763–3772 | Cite as

Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production

  • Felicitas Fazius
  • Christoph Zaehle
  • Matthias Brock
Mini-Review

Abstract

Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

Keywords

meso-diaminopimelate α-aminioadipate Peptidoglycan Antibiotics Aconitase Homoaconitase 

References

  1. Alexander DC, Anders CL, Lee L, Jensen SE (2007) pcd mutants of Streptomyces clavuligerus still produce cephamycin C. J Bacteriol 189:5867–5874CrossRefGoogle Scholar
  2. Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303–307CrossRefGoogle Scholar
  3. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168Google Scholar
  4. Bland DM, Eisele NA, Keleher LL, Anderson PE, Anderson DM (2011) Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis. PLoS One 6:e17352CrossRefGoogle Scholar
  5. Casqueiro J, Gutierréz S, Banuelos O, Hijarrubia MJ, Martin JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188Google Scholar
  6. Cherezova L, Burnside KL, Rose TM (2011) Conservation of complex nuclear localization signals utilizing classical and non-classical nuclear import pathways in LANA homologs of KSHV and RFHV. PLoS One 6:e18920CrossRefGoogle Scholar
  7. de La Fuente JL, Rumbero A, Martin JF, Liras P (1997) Delta-1-piperideine-6-carboxylate dehydrogenase, a new enzyme that forms alpha-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. Biochem J 327(Pt 1):59–64Google Scholar
  8. Fawcett PA, Usher JJ, Huddleston JA, Bleaney RC, Nisbet JJ, Abraham EP (1976) Synthesis of delta-(alpha-aminoadipyl)-cysteinyl-valine and its role in penicillin biosynthesis. Biochem J 157:651–660Google Scholar
  9. Fazius F, Shelest E, Gebhardt P, Brock M (2012) The fungal alpha-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol Microbiol 86:1508–1530CrossRefGoogle Scholar
  10. Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B (2011) Lipoic acid—biological activity and therapeutic potential. Pharmacol Rep 63:849–858Google Scholar
  11. Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of beta-lactam biosynthesis. Nat Prod Rep 30:21–107CrossRefGoogle Scholar
  12. Hijarrubia MJ, Aparicio JF, Martín JF (2002) Nitrate regulation of alpha-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum. Appl Microbiol Biotechnol 59:270–277CrossRefGoogle Scholar
  13. Hijarrubia MJ, Aparicio JF, Martín JF (2003) Domain structure characterization of the multifunctional alpha-aminoadipate reductase from Penicillium chrysogenum by limited proteolysis. Activation of alpha-aminoadipate does not require the peptidyl carrier protein box or the reduction domain. J Biol Chem 278:8250–8256CrossRefGoogle Scholar
  14. Horbach R, Graf A, Weihmann F, Antelo L, Mathea S, Liermann JC, Opatz T, Thines E, Aguirre J, Deising HB (2009) Sfp-type 4'-phosphopantetheinyl transferase is indispensable for fungal pathogenicity. Plant Cell 21:3379–3396CrossRefGoogle Scholar
  15. Horie A, Tomita T, Saiki A, Kono H, Taka H, Mineki R, Fujimura T, Nishiyama C, Kuzuyama T, Nishiyama M (2009) Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus. Nat Chem Biol 5:673–679CrossRefGoogle Scholar
  16. Hudson AO, Gilvarg C, Leustek T (2008) Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of ll-diaminopimelate aminotransferase. J Bacteriol 190:3256–3263CrossRefGoogle Scholar
  17. Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol Biosyst 3:458–465CrossRefGoogle Scholar
  18. Ito A, Oishima T, Ou W, Omura T, Aoyagi H, Lee S, Mihara H, Izumiya N (1985) Effects of synthetic model peptides resembling the extension peptides of mitochondrial enzyme precursors on import of the precursors into mitochondria. J Biochem 98:1571–1582Google Scholar
  19. Jacobsen ID, Grosse K, Slesiona S, Hube B, Berndt A, Brock M (2010) Embryonated eggs as an alternative infection model to investigate Aspergillus fumigatus virulence. Infect Immun 78:2995–3006CrossRefGoogle Scholar
  20. Jaklitsch WM, Hampel W, Rohr M, Kubicek CP, Gamerith G (1986) alpha-Aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum. Can J Microbiol 32:473–480CrossRefGoogle Scholar
  21. Jia Y, Tomita T, Yamauchi K, Nishiyama M, Palmer DR (2006) Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus. Biochem J 396:479–485CrossRefGoogle Scholar
  22. Jones DD, Stott KM, Howard MJ, Perham RN (2000) Restricted motion of the lipoyl-lysine swinging arm in the pyruvate dehydrogenase complex of Escherichia coli. Biochemistry 39:8448–8459CrossRefGoogle Scholar
  23. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146CrossRefGoogle Scholar
  24. Joseph R, Holt SC, Canale-Parola E (1973) Peptidoglycan of free-living anaerobic spirochetes. J Bacteriol 115:426–435Google Scholar
  25. Jürgen UJ, Meissner J, Reichenbach H, Weckesser J (1989) l-ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 60:247–250CrossRefGoogle Scholar
  26. Jürgens UJ, Meißner J, Fischer U, König WA, Weckesser J (1987) Orinithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 148:72–76CrossRefGoogle Scholar
  27. Kasahara T, Kato T (2003) Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature 422:832CrossRefGoogle Scholar
  28. Kobashi N, Nishiyama M, Tanokura M (1999) Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. J Bacteriol 181:1713–1718Google Scholar
  29. Kong KF, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118:1–36CrossRefGoogle Scholar
  30. Kosuge T, Hoshino T (1998) Lysine is synthesized through the alpha-aminoadipate pathway in Thermus thermophilus. FEMS Microbiol Lett 169:361–367Google Scholar
  31. Kur K, Gabriel I, Morschhäuser J, Barchiesi F, Spreghini E, Milewski S (2010) Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence. Mycopathologia 170:397–402CrossRefGoogle Scholar
  32. Leitão AL, Enguita FJ, Martin JF, Santos Oliveira JF (2001) Effect of exogenous lysine on the expression of early cephamycin C biosynthetic genes and antibiotic production in Nocardia lactamdurans MA4213. Appl Microbiol Biotechnol 56:670–675CrossRefGoogle Scholar
  33. Lin Y, Volkman J, Nicholas KM, Yamamoto T, Eguchi T, Nimmo SL, West AH, Cook PF (2008) Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 47:4169–4180CrossRefGoogle Scholar
  34. Madduri K, Stuttard C, Vining LC (1989) Lysine catabolism in Streptomyces spp. is primarily through cadaverine: beta-lactam producers also make alpha-aminoadipate. J Bacteriol 171:299–302Google Scholar
  35. Maragoudakis ME (1967) Homoaconitic acid accumulation by a lysine-requiring yeast mutant. J Bacteriol 94:1060–1065Google Scholar
  36. Marco-Urrea E, Seifert J, von Bergen M, Adrian L (2012) Stable isotope peptide mass spectrometry to decipher amino acid metabolism in Dehalococcoides strain CBDB1. J Bacteriol 194:4169–4177CrossRefGoogle Scholar
  37. Martín JF, Ullán RV, Casqueiro J (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88:91–109Google Scholar
  38. McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT (2006) L, L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci U S A 103:17909–17914Google Scholar
  39. Milewska MJ, Prokop M, Gabriel I, Wojciechowski M, Milewski S (2012) Antifungal activity of homoaconitate and homoisocitrate analogs. Molecules 17:14022–14036CrossRefGoogle Scholar
  40. Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2003) Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase. J Biol Chem 278:1864–1871CrossRefGoogle Scholar
  41. Morace G, Borghi E (2010) Fungal infections in ICU patients: epidemiology and the role of diagnostics. Minerva Anestesiol 76:950–956Google Scholar
  42. Moreno-Vargas L, Correa-Basurto J, Maroun RC, Fernandez FJ (2012) Homology modeling of the structure of acyl-CoA:isopenicillin N-acyltransferase (IAT) from Penicillium chrysogenum. IAT interaction studies with isopenicillin-N, combining molecular dynamics simulations and docking. J Mol Model 18:1189–1205CrossRefGoogle Scholar
  43. Mossmann D, Meisinger C, Vogtle FN (2012) Processing of mitochondrial presequences. Biochim Biophys Acta 1819:1098–1106CrossRefGoogle Scholar
  44. Nishida H, Nishiyama M (2012) Evolution of lysine biosynthesis in the phylum deinococcus-thermus. Int J Evol Biol 2012:6Google Scholar
  45. Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H, Ito H, Hirata A, Oyaizu Y, Komagata K (1987) A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. IJSEM 37:62–67Google Scholar
  46. Özcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311Google Scholar
  47. Özcengiz G, Okay S, Unsaldi E, Taskin B, Liras P, Piret J (2010) Homologous expression of aspartokinase (ask) gene in Streptomyces clavuligerus and its hom-deleted mutant: effects on cephamycin C production. Bioeng Bugs 1:191–197CrossRefGoogle Scholar
  48. Palmer DR, Balogh H, Ma G, Zhou X, Marko M, Kaminskyj SG (2004) Synthesis and antifungal properties of compounds which target the alpha-aminoadipate pathway. Pharmazie 59:93–98Google Scholar
  49. Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344(Pt 2):555–563CrossRefGoogle Scholar
  50. Park JH, Lee SY (2010) Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnol J 5:560–577CrossRefGoogle Scholar
  51. Quintela JC, Pittenauer E, Allmaier G, Aran V, de Pedro MA (1995) Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol 177:4947–4962Google Scholar
  52. Reeds PJ, Burrin DG (2000) The gut and amino acid homeostasis. Nutrition 16:666–668CrossRefGoogle Scholar
  53. Rius N, Demain AL (1997) Lysine epsilon-aminotransferase, the initial enzyme of cephalosporin biosynthesis in actinomycetes. J Microbiol Biotechnol 7:95–100Google Scholar
  54. Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387:827–830CrossRefGoogle Scholar
  55. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258CrossRefGoogle Scholar
  56. Schöbel F, Jacobsen ID, Brock M (2010) Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryot Cell 9:878–893CrossRefGoogle Scholar
  57. Scott I (2012) Regulation of cellular homoeostasis by reversible lysine acetylation. Essays Biochem 52:13–22Google Scholar
  58. Sonawane VC (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120CrossRefGoogle Scholar
  59. Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331CrossRefGoogle Scholar
  60. Strassman M, Ceci LN (1966) Enzymatic formation of cis-homoaconitic acid, an intermediate in lysine biosynthesis in yeast. J Biol Chem 241:5401–5407Google Scholar
  61. Teves F, Lamas-Maceiras M, Garcia-Estrada C, Casqueiro J, Naranjo L, Ullan RV, Scervino JM, Wu X, Velasco-Conde T, Martín JF (2009) Transcriptional upregulation of four genes of the lysine biosynthetic pathway by homocitrate accumulation in Penicillium chrysogenum: homocitrate as a sensor of lysine-pathway distress. Microbiology 155:3881–3892CrossRefGoogle Scholar
  62. Tomé D, Bos C (2007) Lysine requirement through the human life cycle. J Nutr 137:1642S–1645SGoogle Scholar
  63. Umemoto T, Ota T, Sagawa H, Kato K, Takada H, Tsujimoto M, Kawasaki A, Ogawa T, Harada K, Kotani S (1981) Chemical and biological properties of a peptidoglycan isolated from Treponema pallidum kazan. Infect Immun 31:767–774Google Scholar
  64. Vaz FM, Wanders RJ (2002) Carnitine biosynthesis in mammals. Biochem J 361:417–429CrossRefGoogle Scholar
  65. Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459CrossRefGoogle Scholar
  66. Watanabe N, James MN (2011) Structural insights for the substrate recognition mechanism of ll-diaminopimelate aminotransferase. Biochim Biophys Acta 1814:1528–1533CrossRefGoogle Scholar
  67. Weidner G, Steffan B, Brakhage AA (1997) The Aspergillus nidulans lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. Mol Gen Genet 255:237–247CrossRefGoogle Scholar
  68. Wu X, Garcia-Estrada C, Vaca I, Martin JF (2012) Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie 94:354–364CrossRefGoogle Scholar
  69. Xu H, Andi B, Qian J, West AH, Cook PF (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64CrossRefGoogle Scholar
  70. Zhou Y, Hingorani MM (2012) Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA. J Biol Chem 287:35370–35381CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felicitas Fazius
    • 1
  • Christoph Zaehle
    • 2
  • Matthias Brock
    • 1
    • 3
  1. 1.Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knoell InstituteJenaGermany
  2. 2.Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection BiologyHans Knoell InstituteJenaGermany
  3. 3.Department for Microbiology and Molecular Biology, Institute for MicrobiologyFriedrich-Schiller University JenaJenaGermany

Personalised recommendations