Applied Microbiology and Biotechnology

, Volume 97, Issue 12, pp 5555–5564 | Cite as

Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant

  • Paweł Kaszycki
  • Tomasz Walski
  • Nancy Hachicho
  • Hermann J. Heipieper
Applied microbial and cell physiology


The methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. revealed enhanced biodegradation capability of exogenously applied formaldehyde (Fd) upon biostimulation achieved by the presence of methanol, as compared to glucose. Upon growth on either of the above substrates, the strains proved to produce the activity of glutathione-dependent formaldehyde dehydrogenase—the enzyme known to control the biooxidative step of Fd detoxification. However, in the absence of methanol, the yeasts’ tolerance to Fd was decreased, and the elevated sensitivity was especially pronounced for Trichosporon sp. Both strains responded to the methanol and/or Fd treatment by increasing their unsaturation index (UI) at xenobiotic levels below minimal inhibitory concentrations. This indicated that the UI changes effected from the de novo synthesis of (poly) unsaturated fatty acids carried out by viable cells. It is concluded that the yeast cell response to Fd intoxication involves stress reaction at the level of membranes. Fluidization of the lipid bilayer as promoted by methanol is suggested as a significant adaptive mechanism increasing the overall fitness enabling to cope with the formaldehyde xenobiotic via biodegradative pathway of C1-compound metabolism.


Methylotrophic yeast Hansenula polymorpha Trichosporon sp. Membrane adaptation Fatty acid unsaturation Nonconventional yeast Formaldehyde biodegradation 



This work was partially supported by the European Commission within its Seventh Framework Program Project BACSIN (Contract no. 211684). This work contributed to the CITE Research Programme of the Helmholtz Centre for Environmental Research.


  1. Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition, and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22CrossRefGoogle Scholar
  2. Anamnart S, Tolstorukov I, Kaneko Y, Harashima S (1998) Fatty acid desaturation in methylotrophic yeast Hansenula polymorpha strain CBS1976 and unsaturated fatty acid auxotrophic mutants. J Ferment Bioeng 85:476–482CrossRefGoogle Scholar
  3. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50:301–310CrossRefGoogle Scholar
  4. Baerends RJS, Sulter GJ, Jeffries TW, Cregg JM, Veenhuis M (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42CrossRefGoogle Scholar
  5. Baerends RJS, de Hulster E, Geertman J-M A, Daran J-M, van Maris AJA, Veenhuis M, van der Klei IJ, Pronk JT (2008) Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate. Appl Environ Microbiol 74:3182–3188CrossRefGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Cialfi S, Uccelletti D, Carducci A, Wesolowski-Louvel M, Mancini P, Heipieper HJ, Saliola M (2011) KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis. Microbiology SGM 157:1509–1518CrossRefGoogle Scholar
  9. Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182CrossRefGoogle Scholar
  10. Glancer-Soljan M, Soljan V, Dragicevic TL, Cacic L (2001) Aerobic degradation of formaldehyde in wastewater from the production of melamine resins. Food Technol Biotechnol 39:197–202Google Scholar
  11. Gleeson MA, Sudbery PE (1988) The methylotrophic yeasts. Yeast 4:1–15CrossRefGoogle Scholar
  12. Gonchar MV, Titorenko VI, Gladarevskaya NN, Sibirny AA (1990) The phenomenon of the medium acidification by methylotrophic yeast cells and its biochemical nature. Biochem Mosc 55:2148–2157Google Scholar
  13. Gonchar M, Maidan M, Korpan Y, Sibirny V, Kotylak Z, Sibirny A (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307–314Google Scholar
  14. Hartner FS, Glieder A (2006) Regulation of methanol utilization pathway genes in yeasts. Microbial Cell Fact 5:39. doi: 10.1186/1475-2859-5-39 CrossRefGoogle Scholar
  15. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852Google Scholar
  16. Heipieper HJ, Isken S, Saliola M (2000) Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Res Microbiol 151:777–784CrossRefGoogle Scholar
  17. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777Google Scholar
  18. Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444Google Scholar
  19. Jones RP, Greenfield PF (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast 3:223–232CrossRefGoogle Scholar
  20. Kaszycki P, Czechowska K, Petryszak P, Międzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Polon 53:463–473Google Scholar
  21. Kaszycki P, Kołoczek H (2000) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha in a model wastewater system. Microbiol Res 154:289–296CrossRefGoogle Scholar
  22. Kaszycki P, Tyszka M, Malec P, Kołoczek H (2001) Formaldehyde and methanol biodegradation with methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177CrossRefGoogle Scholar
  23. Kato N, Miyawaki N, Sakazawa C (1982) Oxidation of formaldehyde by resistant strains Debaryomyces vanriji and Trichosporon penicillatum. Agric Biol Chem 46:655–661CrossRefGoogle Scholar
  24. Khlupova M, Kuznetsov B, Demkiv O, Gonchar M, Csöregi E, Shleev S (2007) Intact and permeabilized cells of the yeast Hansenula polymorpha as bioselective elements for amperometric assay of formaldehyde. Talanta 71:934–940CrossRefGoogle Scholar
  25. Kim IS, Lee H, Trevors JT (2001) Effects of 2,2',5,5'-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol Lett 200:17–24Google Scholar
  26. Koukou AI, Tsoukatos D, Drainas C (1990) Effect of ethanol on the phospholipid and fatty acid content of Schizosacharomyces pombe. Adv Microbial Physiol 25:1271–1277Google Scholar
  27. Lee B, Yurimoto H, Sakai Y, Kato N (2002) Physiological role of the glutathione dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii. Microbiology 148:2697–2704Google Scholar
  28. Löffler C, Eberlein C, Mäusezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75CrossRefGoogle Scholar
  29. Lu S-F, Tolstrukov II, Anamart S, Kaneko Y, Harashima S (2000) Cloning, sequencing, and functional analysis of H-OLE1 gene encoding ∆9-fatty acid desaturase in Hansenula polymorpha. Appl Microbiol Biotechnol 54:499–509CrossRefGoogle Scholar
  30. Martin CE, Oh C-S, Kandasamy P, Chellapa R, Vemula M (2002) Yeast desaturases. Biochem Soc Trans 30:1080–1082CrossRefGoogle Scholar
  31. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608Google Scholar
  32. Murdanoto AP, Sakai Y, Konishi T, Yasuda F, Tani Y, Kato N (1997) Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. Appl Environ Microbiol 63:1715–1720Google Scholar
  33. Mykytczuk NC, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82CrossRefGoogle Scholar
  34. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421Google Scholar
  35. Rakpuang W (2009) Growth temperatures and various concentrations of ricinoleic acid affect fatty acid composition in two strains of Hansenula polymorpha. Pak J Biol Sci 12:986–990CrossRefGoogle Scholar
  36. Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116CrossRefGoogle Scholar
  37. Sakai Y, Murdanoto AP, Sembiring L, Tani Y, Kato N (1995) A novel formaldehyde oxidation pathway in methylotrophic yeasts: Methylformate as a possible intermediate. FEMS Microbiol Lett 127:229–234CrossRefGoogle Scholar
  38. Sasnauskas K, Jomantiene R, Januska A, Lebediene E, Lebedys J, Janulaitis A (1992) Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene 122:207–211CrossRefGoogle Scholar
  39. Schneiter R, Daum G (2006) Extraction of yeast lipids. Methods Mol Biol 313:41–46Google Scholar
  40. Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP (1988) Genetic control of methanol utilization in yeasts. J Basic Microbiol 28:293–319CrossRefGoogle Scholar
  41. Sigawi S, Smutok O, Demkiv O, Zakalska O, Gayda G, Nitzan Y, Nisnevitch M, Gonchar M (2011) Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde. J Biotechnol 153:138–144CrossRefGoogle Scholar
  42. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222Google Scholar
  43. Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525CrossRefGoogle Scholar
  44. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462CrossRefGoogle Scholar
  45. van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322Google Scholar
  46. van Zutphen T, Baerends RJS, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11:1. doi: 10.1186/1471-2164-11-1 CrossRefGoogle Scholar
  47. Viegas CA, Cabral MG, Teixeira MC, Neumann G, Heipieper HJ, Sá-Correia I (2005) Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membrane fatty acid saturation degree and decreased OLE1 transcription. Biochem Biophys Res Commun 330:271–278CrossRefGoogle Scholar
  48. Walker GM (2000) Yeast physiology and biotechnology, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  49. Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvent on membranes. Biochim Biophys Acta 1286:225–245CrossRefGoogle Scholar
  50. Yurimoto H, Kato N, Sakai Y (2005) Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec 5:367–375CrossRefGoogle Scholar
  51. Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: Metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011:101298. doi: 10.1155/2011/101298 Google Scholar
  52. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paweł Kaszycki
    • 1
  • Tomasz Walski
    • 1
  • Nancy Hachicho
    • 2
  • Hermann J. Heipieper
    • 2
  1. 1.Faculty of HorticultureUniversity of Agriculture in KrakówKrakowPoland
  2. 2.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations