Applied Microbiology and Biotechnology

, Volume 97, Issue 8, pp 3253–3265 | Cite as

The biotechnological use and potential of plant pathogenic smut fungi

  • Michael Feldbrügge
  • Ronny Kellner
  • Kerstin SchipperEmail author


Plant pathogens of the family Ustilaginaceae parasitise mainly on grasses and cause smut disease. Among the best characterised members of this family are the covered smut fungus Ustilago hordei colonising barley and oat as well as the head smut Sporisorium reilianum and the corn smut Ustilago maydis, both infecting maize. Over the past years, U. maydis in particular has matured into a model system for diverse topics like plant–pathogen interaction, cellular transport processes or DNA repair. Consequently, a broad set of genetic, molecular and system biological methods has been established. This set currently serves as a strong foundation to improve existing and establish novel biotechnological applications. Here, we review four promising aspects covering different fields of applied science: (1) synthesis of secondary metabolites produced at fermenter level. (2) Lipases and other hydrolytic enzymes with potential roles in biocatalytic processes. (3) Degradation of ligno-cellulosic plant materials for biomass conversion. (4) Protein expression based on unconventional secretion, a novel approach inspired by basic research on mRNA transport. Thus, plant pathogenic Ustilaginaceae offer a great potential for future biotechnological applications by combining basic research and applied science.


Smut fungi Secondary metabolite Bioconversion Biofuel Protein expression 



We acknowledge all lab members for valuable discussion and critical reading of the manuscript. Special thanks for providing the photos and the chemical structure displayed in Figs. 1, 2, 3 and 4 to Dr. Longjang Fan, Hanne Horn, Dorothee Schipper, Thorsten Langner, Janpeter Stock and Sebastian Schulz, respectively. We further acknowledge the excellent technical assistance by Bettina Axler. Our applied work was supported by the Ministry of Innovation, Science and Research of North Rhine-Westphalia and the Heinrich Heine University Düsseldorf (HHUD) through funding within the CLIB-Graduate Cluster Industrial Biotechnology and by a grant from the Strategic Research Fund of the HHUD to KS. Basic research in the laboratory was funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the German/Mexican research group FOR1334 (FE 448/5-1), DFG grant FE448/3-2 as well as the HHUD graduate schools iGRAD-MOI and iGRAD-Plant.

Conflict of interest


Supplementary material

253_2013_4777_MOESM1_ESM.pdf (83 kb)
ESM 1 (PDF 82 kb)


  1. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35:1559–1570. doi: 10.1007/s10295-008-0460-4 CrossRefGoogle Scholar
  2. Bakkeren G, Kronstad JW (1993) Conservation of the b mating-type gene complex among bipolar and tetrapolar smut fungi. Plant Cell 5:123–136. doi: 10.1105/tpc.5.1.123 Google Scholar
  3. Banuett F (1992) Ustilago maydis, the delightful blight. Trends Genet 8:174–180Google Scholar
  4. Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92. doi: 10.1111/j.1364-3703.2004.00210.x CrossRefGoogle Scholar
  5. Bauer R, Begerow D, Oberwinkler F, Piepenbring M, Berbee ML (2001) Ustilaginomycetes. In: McLaughlin DJ, McLaughlin EG, Lemker PA (eds) The mycota VII. Systematics and evolution, part B. Springer, Berlin, pp 57–83CrossRefGoogle Scholar
  6. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M (2012) Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 125:2740–2752. doi: 10.1242/jcs.101212 CrossRefGoogle Scholar
  7. Becht P, Vollmeister E, Feldbrügge M (2005) Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot Cell 4:121–133. doi: 10.1128/EC.4.1.121-133.2005 CrossRefGoogle Scholar
  8. Becht P, König J, Feldbrügge M (2006) The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci 119:4964–4973. doi: 10.1242/jcs.03287 CrossRefGoogle Scholar
  9. Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60CrossRefGoogle Scholar
  10. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916CrossRefGoogle Scholar
  11. Bergmann S, Schürmann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217CrossRefGoogle Scholar
  12. Böhmer M, Colby T, Böhmer C, Bräutigam A, Schmidt J, Bölker M (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 7:675–685. doi: 10.1002/pmic.200600900 CrossRefGoogle Scholar
  13. Bölker M (2001) Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401Google Scholar
  14. Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism-from genomics to biochemistry. Fungal Genet Biol 45:S88–93. doi: 10.1016/j.fgb.2008.05.007 CrossRefGoogle Scholar
  15. Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis: region- and stereoselective biotransformations, 2nd edn. Wiley, WeinheimGoogle Scholar
  16. Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063CrossRefGoogle Scholar
  17. Brachmann A, König J, Julius C, Feldbrügge M (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genom 272:216–226. doi: 10.1007/s00438-004-1047-z CrossRefGoogle Scholar
  18. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445. doi: 10.1146/annurev-phyto-080508-081923 CrossRefGoogle Scholar
  19. Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT (2012) The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 94:141–150. doi: 10.1007/s00253-012-3903-9 CrossRefGoogle Scholar
  20. Cano-Canchola C, Acevedo L, Ponce-Noyola P, Flores-Martínez A, Flores-Carreón A, Leal-Morales CA (2000) Induction of lytic enzymes by the interaction of Ustilago maydis with Zea mays tissues. Fungal Genet Biol 29:145–151. doi: 10.1006/fgbi.2000.1196 CrossRefGoogle Scholar
  21. Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. doi: 10.1146/annurev-chembioeng-061010-114205 CrossRefGoogle Scholar
  22. Cortes-Sánchez A, Hernández-Sánchez H, Jaramillo-Flores M (2011) Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. Afr J Microbiol Res 5:2512–2523Google Scholar
  23. Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2:57. doi: 10.1186/1471-2164-13-57 CrossRefGoogle Scholar
  24. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226CrossRefGoogle Scholar
  25. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631. doi: 10.1007/s00253-010-2721-1 CrossRefGoogle Scholar
  26. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x CrossRefGoogle Scholar
  27. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. doi: 10.1016/j.biotechadv.2009.01.008 CrossRefGoogle Scholar
  28. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398. doi: 10.1038/nature10454 CrossRefGoogle Scholar
  29. Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R (2008) Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165:29–40. doi: 10.1016/j.jplph.2007.05.016 CrossRefGoogle Scholar
  30. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290. doi: 10.1371/journal.ppat.1000290 CrossRefGoogle Scholar
  31. Drews A, Arellano-Garcia H (2008) Model-based determination of changing kinetics in high cell density cultures using respiration data. Chem Eng Sci 63:4789–4799CrossRefGoogle Scholar
  32. Drews A, Kraume M (2005) Process improvement by application of membrane bioreactors. Chem Eng Res Design 83:276–284CrossRefGoogle Scholar
  33. Drews A, Kraume M (2007) On maintenance models in severely and long-term limited membrane bioreactor cultivations. Biotechnol Bioeng 96:892–903. doi: 10.1002/bit.21211 CrossRefGoogle Scholar
  34. Fernández-Alvarez A, Elías-Villalobos A, Ibeas JI (2010) Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fungal Genet Biol 47:727–735. doi: 10.1016/j.fgb.2010.06.004 CrossRefGoogle Scholar
  35. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. doi: 10.1126/science.1221748 CrossRefGoogle Scholar
  36. Fonseca-García C, López MG, Aréchiga-Carvajal ET, Ruiz-Herrera J (2011) A novel polysaccharide secreted by pal/rim mutants of the phytopathogen fungus Ustilago maydis. Carbohydr Polym 86:1646–1650CrossRefGoogle Scholar
  37. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem, Int Ed Engl 49:5510–5514CrossRefGoogle Scholar
  38. Göhre V, Vollmeister E, Bölker M, Feldbrügge M (2012) Microtubule-dependent membrane dynamics in Ustilago maydis: trafficking and function of Rab5a-positive endosomes. Commun Integr Biol 5:485–490CrossRefGoogle Scholar
  39. Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186. doi: 10.1002/biot.200500051 CrossRefGoogle Scholar
  40. Hartmann HA, Krüger J, Lottspeich F, Kahmann R (1999) Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:1293–1306Google Scholar
  41. Haskins RH, Thorn JA (1951) Biochemistry of the Ustilaginales. VII. Antibiotic activity of ustilagic acid. Can J Bot 29:585–592CrossRefGoogle Scholar
  42. Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the Ustilaginales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1:749–756CrossRefGoogle Scholar
  43. Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C, Schüler D, Vincon V, Finkernagel F, Flor-Parra I, Kämper J (2010) The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog 6:e1001035. doi: 10.1371/journal.ppat.1001035 CrossRefGoogle Scholar
  44. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684. doi: 10.1371/journal.ppat.1002684 CrossRefGoogle Scholar
  45. Hewald S, Josephs K, Bölker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040. doi: 10.1128/AEM.71.6.3033-3040.2005 CrossRefGoogle Scholar
  46. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477. doi: 10.1128/AEM.00506-06 CrossRefGoogle Scholar
  47. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccases and related multicopper oxidase protein sequences. FEBS J 273:2308–2326CrossRefGoogle Scholar
  48. Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 575–595Google Scholar
  49. Holliday R (2004) Early studies on recombination and DNA repair in Ustilago maydis. DNA Repair 3:671–682. doi: 10.1016/j.dnarep.2004.02.002 CrossRefGoogle Scholar
  50. Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y (2006) Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccaromyces pombe. Appl Microbiol Biotechnol 73:404–420CrossRefGoogle Scholar
  51. Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85:667–677CrossRefGoogle Scholar
  52. Iturriaga G, Jefferson RA, Bevan MW (1989) Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1:381–390. doi: 10.1105/tpc.1.3.381 Google Scholar
  53. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefGoogle Scholar
  54. Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 7:1122–1136. doi: 10.1002/biot.201200033 CrossRefGoogle Scholar
  55. Jin FJ, Watanabe T, Juvvadi PR, Maruyama J, Arioka M, Kitamoto K (2007) Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76:1059–1068CrossRefGoogle Scholar
  56. Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28:69–73CrossRefGoogle Scholar
  57. Kahmann R, Schirawski J (2007) Mating in the smut fungi: from a to b to the downstream cascades. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, pp 377–387Google Scholar
  58. Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83CrossRefGoogle Scholar
  59. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martin J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101. doi: 10.1038/nature05248 CrossRefGoogle Scholar
  60. Katsivela E, Kleppe F, Lang S, Wagner F (1995) Ustilago maydis lipase I. Hydrolysis and ester-synthesis activities of crude enzyme preparation. Enzyme Microb Tech 17:739–745. doi: 10.1016/0141-0229(94)00127-d CrossRefGoogle Scholar
  61. Kellner R, Vollmeister E, Feldbrügge M, Begerow D (2011) Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 7:e1002436. doi: 10.1371/journal.pgen.1002436 CrossRefGoogle Scholar
  62. Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R (2010) The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol 187:957–968. doi: 10.1111/j.1469-8137.2010.03413.x CrossRefGoogle Scholar
  63. Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451. doi: 10.1021/op0200165 CrossRefGoogle Scholar
  64. Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36CrossRefGoogle Scholar
  65. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94(3):187–201Google Scholar
  66. Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11:43. doi: 10.1186/1475-2859-11-43 CrossRefGoogle Scholar
  67. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M (2011) The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 10:M111.011213. doi: 10.1074/mcp.M111.011213 CrossRefGoogle Scholar
  68. König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M (2009) The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28:1855–1866. doi: 10.1038/emboj.2009.145 CrossRefGoogle Scholar
  69. Kües U, Rühl M (2011) Multiple multi-copper oxidase families in Basidiomycetes—what for? Curr Genet 12:17–94Google Scholar
  70. Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkotter M, Moore R, Kahmann R, Bakkeren G, Schirawski J (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–1745. doi: 10.1105/tpc.112.097261 CrossRefGoogle Scholar
  71. Lei XG, Porres JM (2003) Phytase enzymology, applications, and biotechnology. Biotechnol Lett 25:1787–1794CrossRefGoogle Scholar
  72. Liu Y, Koh CM, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol 102:3927–3933. doi: 10.1016/j.biortech.2010.11.115 CrossRefGoogle Scholar
  73. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161CrossRefGoogle Scholar
  74. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380. doi: 10.1016/j.copbio.2009.05.009 CrossRefGoogle Scholar
  75. Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329CrossRefGoogle Scholar
  76. Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907CrossRefGoogle Scholar
  77. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356CrossRefGoogle Scholar
  78. Mercado-Flores Y, Guerra-Sánchez G, Villa-Tanaca L, Hernández-Rodríguez C (2003a) Purification and characterization of an extracellular non-aspartyl acid protease (pumAe) from Ustilago maydis. Curr Microbiol 47:408–411CrossRefGoogle Scholar
  79. Mercado-Flores Y, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2003b) Proteinases and exopeptidases from the phytopathogenic fungus Ustilago maydis. Mycologia 95:327–339CrossRefGoogle Scholar
  80. Mimee B, Labbé C, Pelletier R, Bélanger RR (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49:1597–1599CrossRefGoogle Scholar
  81. Moir DT, Mao JI (1990) Protein secretion systems in microbial and mammalian cells. Bioprocess Technol 9:67–94Google Scholar
  82. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008) Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences. J Oleo Sci 57:549–556CrossRefGoogle Scholar
  83. Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009) Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fungus, Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 73:788–792CrossRefGoogle Scholar
  84. Morita T, Ito E, Kitamoto HK, Takegawa K, Fukuoka T, Imura T, Kitamoto D (2010a) Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica. Yeast 27:905–917. doi: 10.1002/yea.1794 CrossRefGoogle Scholar
  85. Morita T, Kitagawa M, Yamamoto S, Sogabe A, Imura T, Fukuoka T, Kitamoto D (2010b) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59:267–272CrossRefGoogle Scholar
  86. Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 75:1371–1376CrossRefGoogle Scholar
  87. Müller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45:S63–70. doi: 10.1016/j.fgb.2008.03.012 CrossRefGoogle Scholar
  88. Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012a) Identification, cloning, and characterization of beta-glucosidase from Ustilago esculenta. Appl Microbiol Biotechnol 93:1989–1998. doi: 10.1007/s00253-011-3538-2 CrossRefGoogle Scholar
  89. Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012b) A novel glycosylphosphatidylinositol-anchored glycoside hydrolase from Ustilago esculenta functions in β-1,3-glucan degradation. Appl Environ Microbiol 78:5682–5689. doi: 10.1128/AEM.00483-12 CrossRefGoogle Scholar
  90. Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). J Am Chem Soc 74:4856–4847CrossRefGoogle Scholar
  91. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726Google Scholar
  92. Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15:187–193. doi: 10.1016/j.cbpa.2010.11.019 CrossRefGoogle Scholar
  93. Raboin LM, Selvi A, Oliveira KM, Paulet F, Calatayud C, Zapater MF, Brottier P, Luzaran R, Garsmeur O, Carlier J, D'Hont A (2007) Evidence for the dispersal of a unique lineage from Asia to America and Africa in the sugarcane fungal pathogen Ustilago scitaminea. Fungal Genet Biol 44:64–76. doi: 10.1016/j.fgb.2006.07.004 CrossRefGoogle Scholar
  94. Reed RW, Holder MA (1953) The antibacterial spectrum of ustilagic acid. Can J Med Sci 31:505–511Google Scholar
  95. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. doi: 10.1016/j.biotechadv.2008.11.001 CrossRefGoogle Scholar
  96. Scherer M, Heimel K, Starke V, Kämper J (2006) The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:2388–2401. doi: 10.1105/tpc.106.043521 CrossRefGoogle Scholar
  97. Schirawski J, Heinze B, Wagenknecht M, Kahmann R (2005) Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4:1317–1327. doi: 10.1128/EC.4.8.1317-1327.2005 CrossRefGoogle Scholar
  98. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkotter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548. doi: 10.1126/science.1195330 CrossRefGoogle Scholar
  99. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372. doi: 10.1007/s00253-004-1656-9 CrossRefGoogle Scholar
  100. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146. doi: 10.1016/j.tibtech.2004.01.010 CrossRefGoogle Scholar
  101. Sodoyer R (2004) Expression systems for the production of recombinant pharmaceuticals. BioDrugs 18:51–62CrossRefGoogle Scholar
  102. Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252:503–509Google Scholar
  103. Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51:33–39CrossRefGoogle Scholar
  104. Steinberg G, Pérez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67. doi: 10.1016/j.tcb.2007.11.008 CrossRefGoogle Scholar
  105. Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K (2012) Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 161:80–91. doi: 10.1016/j.jbiotec.2012.03.004 CrossRefGoogle Scholar
  106. Stoll M, Begerow D, Oberwinkler F (2005) Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycol Res 109:342–356CrossRefGoogle Scholar
  107. Suzuki T, Choi JH, Kawaguchi T, Yamashita K, Morita A, Hirai H, Nagai K, Hirose T, Omura S, Sunazuka T, Kawagishi H (2012) Makomotindoline from Makomotake, Zizania latifolia infected with Ustilago esculenta. Bioorg Med Chem Lett 22:4246–4248. doi: 10.1016/j.bmcl.2012.05.021 CrossRefGoogle Scholar
  108. Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533. doi: 10.1111/j.1365-2958.2007.05941.x CrossRefGoogle Scholar
  109. Teichmann B, Liu L, Schink KO, Bölker M (2010) Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Appl Environ Microbiol 76:2633–2640. doi: 10.1128/AEM.02211-09 CrossRefGoogle Scholar
  110. Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR (2011) Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79:1483–1495. doi: 10.1111/j.1365-2958.2010.07533.x CrossRefGoogle Scholar
  111. Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229. doi: 10.1016/j.biotechadv.2010.11.006 CrossRefGoogle Scholar
  112. Vakhlu JK, A. (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9. doi: 10.225/vol9-issue1fulltext-9
  113. Valdez-Morales M, Barry K, Fahey GC Jr, Domínguez J, Gonzalez de Meja E, Valverde ME, Paredes-López O (2010) Effects of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). Food Chem 119:689–697CrossRefGoogle Scholar
  114. Valverde ME, Paredes-López O, Pataky JK, Guevara-Lara F (1995) Huitlacoche (Ustilago maydis) as a food source—biology, composition, and production. Crit Rev Food Sci Nutr 35:191–229. doi: 10.1080/10408399509527699 CrossRefGoogle Scholar
  115. Vánky K (2011) Smut fungi of the world. APS press, St PaulGoogle Scholar
  116. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012a) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36:59–77. doi: 10.1111/j.1574-6976.2011.00296.x CrossRefGoogle Scholar
  117. Vollmeister E, Schipper K, Feldbrügge M (2012b) Microtubule-dependent mRNA transport in the model microorganism Ustilago maydis. RNA Biol 9:261–268. doi: 10.4161/rna.19432 CrossRefGoogle Scholar
  118. Wang J, Budde AD, Leong SA (1989) Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5-oxygenase gene. J Bacteriol 171:2811–2818Google Scholar
  119. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139CrossRefGoogle Scholar
  120. Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, Kahmann R, Schirawski J (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75:1260–1271. doi: 10.1111/j.1365-2958.2010.07048.x CrossRefGoogle Scholar
  121. Xu XW, Ke WD, Yu XP, Wen J, Ge S (2008) A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theor Appl Genet 116:835–843. doi: 10.1007/s00122-008-0717-3 CrossRefGoogle Scholar
  122. Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051. doi: 10.1128/JB.183.13.4040-4051.2001 CrossRefGoogle Scholar
  123. Zarnack K, Maurer S, Kaffarnik F, Ladendorf O, Brachmann A, Kämper J, Feldbrügge M (2006) Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43:727–738. doi: 10.1016/j.fgb.2006.05.006 CrossRefGoogle Scholar
  124. Zuther K, Mayser P, Hettwer U, Wu W, Spiteller P, Kindler BL, Karlovsky P, Basse CW, Schirawski J (2008) The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 68:152–172. doi: 10.1111/j.1365-2958.2008.06144.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Feldbrügge
    • 1
  • Ronny Kellner
    • 2
  • Kerstin Schipper
    • 1
    Email author
  1. 1.Institute for MicrobiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Max Planck Institute for Terrestrial MicrobiologyFungal BiodiversityMarburgGermany

Personalised recommendations