Applied Microbiology and Biotechnology

, Volume 97, Issue 21, pp 9429–9437 | Cite as

Discovery of novel secreted fungal sulfhydryl oxidases with a plate test screen

  • Outi Nivala
  • Maija-Liisa Mattinen
  • Greta Faccio
  • Johanna Buchert
  • Kristiina Kruus
Biotechnologically relevant enzymes and proteins


Sulfhydryl oxidases (SOX) are FAD-dependent enzymes capable of oxidising free thiol groups and forming disulphide bonds. Although the quantity of scientific papers and suggested applications for SOX is constantly increasing, only a limited number of microbial SOX have been reported and are commercially available. Hence, the aim of this study was to develop a fast and reliable qualitative plate test for screening novel secreted fungal SOX. The screening was based on the Ellman's reagent, i.e. 5,5′-dithiobis[2-nitrobenzoic acid]. Altogether, 32 fungal strains from an in-house culture collection were screened. A total of 13 SOX-producing strains were found positive in the plate test screen. The novel SOX producers were Aspergillus tubingensis, Chaetomium globusum, Melanocarpus albomyces, Penicillium aurantiogriseum, Penicillium funiculosum, Coniophora puteana and Trametes hirsuta. Six of the discovered SOX were partially characterised by determination of isoelectric point, pH optimum and substrate specificity. A. tubingensis was identified as the most efficient novel SOX producer.


Fungi Enzyme Sulfhydryl oxidase Oxidation Thiol Ellman's reagent Screening 



The research was supported by Academy of Finland: Enzymatic cross-linking of food proteins: impact of food protein folding on the mode of action of cross-linking enzymes (No. 110965), EU: High performance industrial protein matrices (No. NMP-3-CT-2003-505790) and TEKES (The Finnish Funding Agency for Technology and Innovation): Tailored nanostabilisers for biocomponent interfaces (TAINA, no: VTT-R-06743-08). In addition, Outi Liehunen, Riitta Isoniemi and Päivi Matikainen are thanked for the technical assistance.

Supplementary material

253_2013_4753_MOESM1_ESM.pdf (378 kb)
ESM 1 (PDF 378 kb)


  1. Aoyama N, Miike A, Shimizu Y, Tatano T (1992) Method for the determination of mercapto compounds and reagent for use therein. European patent 0159870 B1Google Scholar
  2. Aurbach GD, Jakoby WB (1962) The multiple functions of thiooxidase. J Biol Chem 237:565–568PubMedGoogle Scholar
  3. Clare DA, Blakistone BA, Swaisgood HE, Horton HR (1981) Sulfhydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase. Arch Biochem Biophys 211:44–47. doi: 10.1016/0003-9861(81)90427-6 PubMedCrossRefGoogle Scholar
  4. de la Motte RS, Wagner FW (1987) Aspergillus niger sulfhydryl oxidase. Biochemistry 26:7363–7371. doi: 10.1021/bi00397a025 PubMedCrossRefGoogle Scholar
  5. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77PubMedCrossRefGoogle Scholar
  6. Erzhong W (2010a) Reagent (kit) for diagnosing/determining amino acid and method for determining concentration of amino acid. Patent application CN101762486Google Scholar
  7. Erzhong W (2010b) Homocysteine diagnosis/determination reagent (kit) and homocysteine concentration determination method. Patent application CN101762514Google Scholar
  8. Faccio G, Kruus K, Buchert J, Saloheimo M (2010) Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae. BMC Biochem 31:1–11. doi: 10.1186/1471-2091-11-31 Google Scholar
  9. Faccio G, Kruus K, Buchert J, Saloheimo M (2011a) Production and characterization of AoSOX2 from Aspergillus oryzae, a novel flavin-dependent sulfhydryl oxidase with good pH and temperature stability. Appl Microbiol Biotechnol 90:941–949. doi: 10.1007/s00253-011-3129-2 PubMedCrossRefGoogle Scholar
  10. Faccio G, Nivala O, Kruus K, Buchert J, Saloheimo M (2011b) Sulfhydryl oxidases: sources, properties, production and applications. Appl Microbiol Biotechnol 91:957–966. doi: 10.1007/s00253-011-3440-y PubMedCrossRefGoogle Scholar
  11. Faccio G, Flander L, Buchert J, Saloheimo M, Nordlund E (2012) Sulfhydryl oxidase enhances the effects of ascorbic acid in wheat dough. J Cereal Sci 55:37–43. doi: 10.1016/j.jcs.2011.10.002 CrossRefGoogle Scholar
  12. Guichard H, Bonnarme P (2005) Development and validation of a plate technique for screening of microorganisms that produce volatile sulfur compounds. Anal Biochem 338:299–305. doi: 10.1016/j.ab.2004.12.027 PubMedCrossRefGoogle Scholar
  13. Haarasilta S, Vaisanen S (1989) Method for improving flour dough. European Patent Application 0321811A1Google Scholar
  14. Hammer FE, Scott D, Wagner FW, Ray L, de la Motte RS (1990) Microbial sulfhydryl oxidase and method. US patent application US4894340Google Scholar
  15. Janolino VG, Swaisgood HE (1975) Isolation and characterization of sulfhydryl oxidase from bovine milk. J Biol Chem 250:2532–2538PubMedGoogle Scholar
  16. Janolino VG, Swaisgood HE (1992) A comparison of sulfhydryl oxidases from bovine milk and from Aspergillus niger. Milchwissenschaft 47:143–146Google Scholar
  17. Kaufman SP, Fennema O (1987) Evaluation of sulfhydryl oxidase as a strengthening agent for wheat flour dough. Cereal Chem 64:172–176Google Scholar
  18. Kusakabe H, Kuninaka A, Yoshino H (1982) Purification and properties of a new enzyme, glutathione oxidase from Penicillium sp. K-6-5. Agric Biol Chem 46:2057–2067CrossRefGoogle Scholar
  19. Kusakabe H, Midorikawa Y, Kuninaka A, Yoshino H (1983) Distribution of extracellular oxygen related enzymes in molds. Agric Biol Chem 47:1385–1387CrossRefGoogle Scholar
  20. Lee JE, Hofhaus G, Lisowsky T (2000) Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett 477:62–66. doi: 10.1016/S0014-5793(00)01767-1 PubMedCrossRefGoogle Scholar
  21. Mandels GR (1956) Properties and surface location of a sulfhydryl oxidizing enzyme in fungus spores. J Bacteriol 72:230–234PubMedGoogle Scholar
  22. Neufeld HA, Green LF, Latterell FM, Weintraub RL (1958) Thiooxidase, a new sulfhydryl-oxidizing enzyme from Piricularia oryzae and Polyporus versicolor. J Biol Chem 232:1093–1099PubMedGoogle Scholar
  23. Ostrowski MC, Kistler WS (1980) Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry 19:2639–2645PubMedCrossRefGoogle Scholar
  24. Raje S, Glynn NM, Thorpe C (2002) A continuous fluorescence assay for sulfhydryl oxidase. Anal Biochem 307:266–272. doi: 10.1016/S0003-2697(02)00050-7 PubMedCrossRefGoogle Scholar
  25. Silaneskenny FJ, Degenhardt A (2010) Increased stability of flavor compounds. US patent application US20100015276 A1Google Scholar
  26. Sliwkowski MB, Sliwkowski MX, Swaisgood HE, Horton HR (1981) Nonidentity of sulfhydryl oxidase and gamma-glutamyltransferase in bovine milk. Arch Biochem Biophys 211:731–737PubMedCrossRefGoogle Scholar
  27. Starnes RL, Katkocin DM, Miller CA, Strobel Jr RJ (1986) Microbial sulfhydryl oxidases. US patent US4632905Google Scholar
  28. Suihko ML (1999) VTT Culture Collection Catalogue of strains, 4th edn. VTT, Espoo, pp 63–113Google Scholar
  29. Swaisgood HE (1977) Process of removing the cooked flavour from milk. US patent US4053644Google Scholar
  30. Swaisgood HE (1980) Sulphydryl oxidase: properties and applications. Enzyme Microb Technol 2:265–272CrossRefGoogle Scholar
  31. Swaisgood HE, Sliwkowski MX, Skudder PJ, Janolino VG (1982) Sulfhydryl oxidase: characterization and application for flavor modification of UHT milk. In: Dupuy P (ed) Utilisation des Enzymes en Technologie Alimentaire. Symp Int, Tech Doc Lavoisier, Paris, pp 229–235Google Scholar
  32. Tawfik DS (2002) Modification of sulfhydryl groups with DTNB. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press, Hatfield, pp 483–484CrossRefGoogle Scholar
  33. Tietze F (1969) Enzymatic method for quantative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522PubMedCrossRefGoogle Scholar
  34. Tury A, Mairet-Coello G, Esnard-Feve A, Benayoun B, Risold PY, Griffond B, Fellmann D (2006) Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323:91–103. doi: 10.1007/s00441-005-0043-x PubMedCrossRefGoogle Scholar
  35. Verbakel JM, Stam H, Maat J, Musters W, Schaap PJ, Visser J, van de Vonderwoort PJ (1996) Cloning and expression of DNA encoding a ripening form of a polypeptide having sulfhydryl oxidase activity. US patent US5529926Google Scholar
  36. Vignaud C, Kaid N, Rakotozafy L, Davidou S, Nicolas J (2002) Partial purification and characterization of sulfhydryl oxidase from Aspergillus niger. J Food Sci 67:2016–2022. doi: 10.1111/j.1365-2621.2002.tb09494.x CrossRefGoogle Scholar
  37. Wang C, Wesener SR, Zhang H, Cheng YQ (2009) An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. Chem Biol 16:585–593. doi: 10.1016/j.chembiol.2009.05.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Outi Nivala
    • 1
    • 2
  • Maija-Liisa Mattinen
    • 2
  • Greta Faccio
    • 2
    • 3
  • Johanna Buchert
    • 2
  • Kristiina Kruus
    • 2
  1. 1.The Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.VTT Technical Research Centre of FinlandVuorimiehentieFinland
  3. 3.Empa, Swiss Federal Laboratories for Materials Science and Technology - Laboratory for BiomaterialsSt. GallenSwitzerland

Personalised recommendations