Applied Microbiology and Biotechnology

, Volume 97, Issue 5, pp 1851–1864 | Cite as

Pseudomonas: a promising biocatalyst for the bioconversion of terpenes

  • Gustavo MolinaEmail author
  • Mariana R. Pimentel
  • Gláucia M. Pastore


The Pseudomonas genus is one of the most diverse and ecologically significant groups of known bacteria, and it includes species that have been isolated worldwide in all types of environments. The bacteria from this genus are characterized by an elevated metabolic versatility, which is due to the presence of a complex enzymatic system. Investigations since the early 1960s have demonstrated their potential as biocatalysts for the production of industrially relevant and value-added flavor compounds from terpenes. Although terpenes are often removed from essential oils as undesirable components, its synthetic oxy-functionalized derivatives have broad applications in flavors/fragrances and pharmaceutical industries. Hence, biotransformation appears to be an effective tool for the structural modification of terpene hydrocarbons and terpenoids to synthesize novel and high-valued compounds. This review highlights the potential of Pseudomonas spp. as biocatalysts for the bioconversion of terpenes and summarizes the presently known bioflavors that are obtained from these processes.


Pseudomonas Terpenes Biotransformation Bioconversion Bioflavors 



The authors acknowledge the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.


  1. Abraham W-R, Arfmann H-A, Stumpf B, Washausen P, Kieslich K (1988) Microbial transformations of some terpenoids and natural compounds. In: Schreier P (ed) Bioflavour ’87. Analysis, biochemistry, biotechnology, edn. Walter de Gruyter and Co, Berlin, pp 399–414Google Scholar
  2. Abraham W-R, Arfmann H-A, Giersch W (1992) Microbial hydroxylation of precursors of sinensal. Z Naturforsch 47:851–858Google Scholar
  3. Agrawal R, Seetharam YN, Kelamani RC, Jyothishwaran G (2003) Biotransformation of ferulic acid to vanillin by locally isolated bacterial cultures. Indian J Biotechnol 2:610–612Google Scholar
  4. Aguilar JA, Zavala AN, Diaz-Perez C, Cervantes C, Diaz-Perez AL, Campos-Garcia J (2006) The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa. Appl Environ Microbiol 72:2070–2079CrossRefGoogle Scholar
  5. Ashengroph M, Nahvi I, Zarkesh-Esfahani H (2008) A bioconversion process using a novel isolated strain of Pseudomonas sp. ISPC2 to produce natural vanillin from isoeugenol. Res Pharm Sci 3:41–47Google Scholar
  6. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2010) Optimization of media composition for improving conversion of isoeugenol into vanillin with Pseudomonas sp. strain KOB10 using the Taguchi method. Biocatal Biotransfor 28:339–347CrossRefGoogle Scholar
  7. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and further conversion to vanillic acid. New Biotechnol 28:656–664CrossRefGoogle Scholar
  8. Bauer K, Garbe D, Surburg H (2001) Common fragrance and flavor materials. Preparation, properties and uses. Wiley, WeinheimCrossRefGoogle Scholar
  9. Berger RG (2007) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, BerlinCrossRefGoogle Scholar
  10. Best DJ, Floyd NC, Magalhaes A, Burfield A, Rhodes PM (1987) Initial enzymatic step in the degradation of α-pinene by Pseudomonas fluorescens NCIMB 11671. Biocatal 1:147–159CrossRefGoogle Scholar
  11. Bicas JL, Fontanille P, Pastore GM, Larroche C (2008) Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 105:1991–2001CrossRefGoogle Scholar
  12. Bicas JB, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531CrossRefGoogle Scholar
  13. Bicas JL, Silva JC, Dionísio AP, Pastore GM (2010a) Biotechnological production of bioflavors and functional sugars. Ciênc Tecnol Aliment 30:7–18CrossRefGoogle Scholar
  14. Bicas JL, Fontanille P, Pastore GM, Larroche C (2010b) A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Proc Biochem 45:481–486CrossRefGoogle Scholar
  15. Boontawan A, Stuckey DC (2006) A membrane bioreactor for the biotransformation of α-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl Microbiol Biotechnol 69:643–649CrossRefGoogle Scholar
  16. Borges KB, Borges WS, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77:669–674CrossRefGoogle Scholar
  17. Borges KB, Borges WS, Patrón-Durán R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron-Asymmetr 20:385–397CrossRefGoogle Scholar
  18. Brady D, Reddy S, Mboniswa B, Steenkamp LH, Rousseau A, Parkinson CJ, Chaplin J, Mitra RK, Moutlana T, Marais SF, Gardiner NS (2012) Biocatalytic enantiomeric resolution of l-menthol from an eight isomeric menthol mixture through transesterification. J Mol Catal B Enzyme 75:1–10CrossRefGoogle Scholar
  19. Bug TDH (2004) Chapter 4. Methods for studying enzymatic reactions. In: Introduction to enzyme and coenzyme chemistry, 2nd edn. Blackwell PublishingGoogle Scholar
  20. Cadwallader KR, Braddock RJ (1992) Enzymatic hydration of (4R)-(+)-limonene to (4R)-(+)-alpha-terpineol. Dev Food Sci 29:571–584Google Scholar
  21. Cadwallader KR, Braddock RJ, Parish ME, Higgins DP (1989) Bioconversion of (+)-limonene by Pseudomonas gladioli. J Food Sci 54:1241–1245CrossRefGoogle Scholar
  22. Cantwell SG, Lau EP, Watt DS, Fall RR (1978) Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 135:324–333Google Scholar
  23. Chamberlain EM, Dagley S (1968) The metabolism of thymol by a Pseudomonas. Biochem J 110:755–763Google Scholar
  24. Chatterjee T, Bhattacharyya DK (2001) Biotransformation of limonene by Pseudomonas putida. Appl Microbiol Biotechnol 55:541–546CrossRefGoogle Scholar
  25. Cheetham PSJ, Gradley ML, Sime JT (2005) Flavor/aroma materials and their preparation. US patent 6844019Google Scholar
  26. Chibata I, Tosa T, Sato T (1974) Process for the production of l-aspartic acid. JP Patent 3791926Google Scholar
  27. Colaco D, Furtado I, Naik UP, Mavinkurve S, Paknikar SK (1993) Transformation of alpha-santonin via two independent pathways by Pseudomonas strain S ATCC 43388. Lett Appl Microbiol 17:212–214CrossRefGoogle Scholar
  28. Colocousi A, Saqib KM, Leak DJ (1996) Mutants of Pseudomonas fluorescens NCIMB 11671 defective in the catabolism of α-pinene. Appl Microbiol Biotechnol 45:822–830CrossRefGoogle Scholar
  29. de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142CrossRefGoogle Scholar
  30. Demyttenaere JCR (2001) Biotransformation of terpenoids by microorganisms. In: Rah Man A (ed) Studies in natural products chemistry, edn. Elsevier, London, pp 125–178Google Scholar
  31. Dhavalikar RS, Bhattacharyya PK (1966) Microbiological transformations of terpenes. Part VIII. Fermentation of limonene by a soil pseudomonad. Indian J Biochem 3:144–157Google Scholar
  32. Dhavalikar RS, Rangachari PN, Bhattacharyya PK (1966) Microbiological transformations of terpenes. Part IX. Pathways of degradation of limonene in a soil pseudomonad. Indian J Biochem 3:158–163Google Scholar
  33. Dhavalikar RS, Ehbrecht A, Albroscheit G (1974) Microbial transformations of terpenoides: β-pinene. Dragoco Rep 21:47–49Google Scholar
  34. Diaz-Perez AL, Zavala-Hernandez AN, Cervantes C, Campos-Garcia J (2004) The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70:5102–5110CrossRefGoogle Scholar
  35. Divyashree MS, George J, Agrawal R (2006) Biotransformation of terpenic substrates by resting cells of Aspergillus niger and Pseudomonas putida isolates. J Food Sci Technol 43:73–76Google Scholar
  36. Dubal SA, Tilkari YP, Momin SA, Borkar IV (2008) Biotechnological routes in flavour industries. Advanced Biotech 6(9):20–31Google Scholar
  37. Dutta TK, Chakraborty J, Roy M, Ghosal D, Khara P, Gunsalus IC (2010) Cloning and characterization of a p-cymene monooxygenase from Pseudomonas chlororaphis subsp. aureofaciens. Res Microbiol 161:876–882CrossRefGoogle Scholar
  38. Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179:3171–3180Google Scholar
  39. Eccles R (2011) Menthol and related cooling compounds. J Pharm Pharmacol 46:618–630CrossRefGoogle Scholar
  40. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323CrossRefGoogle Scholar
  41. Esmaeili A, Hashemi E (2011) Biotransformation of myrcene by Pseudomonas aeruginosa. Chem Cent J 5:26–32CrossRefGoogle Scholar
  42. Feron G, Bonnarme P, Durand A (1996) Prospects in the microbial production of food flavours. Trends Food Sci Technol 7:285–293CrossRefGoogle Scholar
  43. Fontanille P, Larroche C (2003) Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl Microbiol Biotechnol 60:534–540Google Scholar
  44. Förster-Fromme K, Jendrossek D (2010a) AtuR is a repressor of acyclic terpene utilisation (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region. FEMS Microbiol Lett 308:166–174Google Scholar
  45. Förster-Fromme K, Jendrossek D (2010b) Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 87:859–869CrossRefGoogle Scholar
  46. Förster-Fromme K, Höschle B, Mack C, Bott M, Armbruster W, Jendrossek D (2006) Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/ isovalerate in Pseudomonas aeruginosa. Appl Environ Microbiol 72:4819–4828CrossRefGoogle Scholar
  47. Förster-Fromme K, Chattopadhyay A, Jendrossek D (2008) Biochemical characterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology 154:789–796CrossRefGoogle Scholar
  48. Fraatz MA, Berger RG, Zorn H (2009) Nootkatone—a biotechnological challenge. Appl Microbiol Biotechnol 83:35–41CrossRefGoogle Scholar
  49. Franzetti L, Scarpellini M (2007) Characterization of Pseudomonas spp. isolated from foods. Ann Microbiol 57:39–47CrossRefGoogle Scholar
  50. Fujimoto Y, Shimizu T, Ishimoto T, Tatsuno T (1978) Studies on the microbiological transformation of alpha-santonin and its analogues. Yakugaku Zasshi 98:230–233Google Scholar
  51. Furukawa H, Morita H, Yoshida T, Nagasawa T (2003) Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol-degrading activity. J Biosci Bioeng 96:401–403Google Scholar
  52. Galeotti N, Mannellli LDC, Massanti G, Bartolini A, Ghelardini C (2002) Menthol: a natural analgesic compound. Neruosci Lett 322:145–148CrossRefGoogle Scholar
  53. Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Bioi Chern 273:4163–4170CrossRefGoogle Scholar
  54. Geusz SD, Anderson DM (1992) Process of using bacteria that metabolize phenylacetate through mandelate. US Patent 5151353Google Scholar
  55. Gibbon GH, Pirt SJ (1971) Degradation of α-pinene by Pseudomonas PX1. FEBS Lett 18:103–105CrossRefGoogle Scholar
  56. Gibbon GH, Millis NF, Pirt SJ (1972) Degradation of α-pinene by bacteria. Proc. IV IFS, Ferment Technol Today 609–612Google Scholar
  57. Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavour and fragrance chemicals. Annu Rev Microbiol 48:773–800CrossRefGoogle Scholar
  58. Hayashi T, Takashiba H, Ueda H, Tsutsumi C (1967) Nippon Nogeikagaku Kaishi, 41.254, 79878gGoogle Scholar
  59. Hayashi T, Kakimoto T, Ueda H, Tatsumi C (1969) Microbiological conversion of terpenes. Part VI. Conversion of borneol. J Agric Chem Soc Jpn 43:583–587Google Scholar
  60. Hayashi T, Uedono S, Tatsumi C (1972) Conversion of α-terpineol to 8,9-epoxy-p-menthan-1-ol. Agric Biol Chem 36:690–691CrossRefGoogle Scholar
  61. Hoschle B, Jendroseek D (2005) Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiol 151:2277–2283CrossRefGoogle Scholar
  62. Hoschle B, Gnau V, Jendrossek D (2005) Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiol 151:3649–3656CrossRefGoogle Scholar
  63. Huang Z, Dostal L, Rosazza JPN (1993) Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol 59:2244–2250Google Scholar
  64. Hungund BL, Bhattacharyya PK, Rangachari PN (1970) Methylisopropyl ketone from a terpene fermentation by the soil pseudomonad, PL-strain. Indian J Biochem 7:80–81Google Scholar
  65. Iurescia S, Marconi AM, Tofani D, Gambacorta A, Paternò A, Devirgiliis C, Van der Werf MJ, Zennaro E (1999) Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1. Appl Environ Microbiol 65:2871–2876Google Scholar
  66. Joglekar SS, Dhavalikar RS (1969) Microbial transformation of terpenoids. I. Identification of metabolites produced by a pseudomonad from citronellal and citral. Appl Microbiol 18:1084–1087Google Scholar
  67. Kato N, Mori Y, Mine N, Fujii S, Watanabe N (1998) Method for producing l-aspartic acid. US Patent 5741681Google Scholar
  68. Kiener A, Roduit J-P, Welling A (1998) Di and trisubstituted pyridines. US Patent 5760236Google Scholar
  69. Kumar SR (2001) l-Glutaminase production by an immobilized marine Pseudomonas sp. BlMS · 51. Doctoral Thesis submitted to the Cochin University of Science and Technology, Kerala, IndiaGoogle Scholar
  70. Labuda IM, Goers SK, Keon KA (1992) Bioconversion process for the production of vanillin. US patent 5128253Google Scholar
  71. Larroche C, Fontanille P (2006) Purification of α-pinene oxide lyase from Pseudomonas rhodesiae CIP 107491. In: Larroche C, Pandey A, Dussap CG (eds) Current topics on bioprocesses in food industry, edn. Asiatech, New Delhi, pp 98–108Google Scholar
  72. Leitereg TJ, Guadagni DG, Harris J, Mon TR, Teranishi R (1971) Chemical and sensory data supporting the difference between the odors of the enantiomeric carvones. J Agric Food Chem 19:785–787CrossRefGoogle Scholar
  73. Li H, Li X, Duan Y, Zhang K-Q, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Appl Microbiol Biotechnol 86:11–17CrossRefGoogle Scholar
  74. Lietzan AD, Nagar M, Pellmann EA, Bourque JR, Bearne SL, St Maurice M (2012) Structure of mandelate racemase with bound intermediate analogues benzohydroxamate and cupferron. Biochem 51:1160–1170CrossRefGoogle Scholar
  75. Linares D, Martinez D, Fontanille P, Larroche C (2008) Production of trans-2-methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Biores Technol 99:4590–4596CrossRefGoogle Scholar
  76. Linares D, Fontanille P, Larroche C (2009) Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res Int 42:461–469CrossRefGoogle Scholar
  77. Lindmark-Henriksson M (2003) Biotransformations of turpentine constituents: oxygenation and esterification. Doctoral Thesis, Stockholm, SwedenGoogle Scholar
  78. Longo MA, Sanromán MS (2006) Production of food aroma compounds. Food Technol Biotechnol 44:335–353Google Scholar
  79. MacRae IC, Alberts V, Carman RM, Shaw IM (1979) Products of 1,8-cineole oxidation by a pseudomonad. Aust J Chem 32:917–922CrossRefGoogle Scholar
  80. Madyastha KM (1984) Microbial transformations of acyclic monoterpenes. Proc Indian Acad Sci (Chem Sci) 93:677–686Google Scholar
  81. Madyastha KM, Bhattacharyya PK (1968) Microbiological transformation of terpenes. Part XIII. Pathways for degradation of p-cymene in a soil pseudomonad (PL-strain). Indian J Biochem 5:161–167Google Scholar
  82. Madyastha KM, Renganathan V (1983) Biodegradation of acetates of geraniol, nerol and citronellol by P. incognita: isolation and identification of metabolites. Indian J Biochem Biophys 20:136–140Google Scholar
  83. Madyastha K, Bhattacharyya PK, Vaidyanathan CS (1977) Metabolism of monoterpene alcohol, linalool, by a soil pseudomonad. Can J Microbiol 3:230–239CrossRefGoogle Scholar
  84. Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350CrossRefGoogle Scholar
  85. Migula W (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–328Google Scholar
  86. Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44:764–771CrossRefGoogle Scholar
  87. Mizutani S, Hayashi T, Ueda H, Tstsumom C (1971) Microbiological conversion of terpenes. Part IX. Conversion of linalool. Nippon Nogei Kagaku Kaishi 45:368–373CrossRefGoogle Scholar
  88. Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294Google Scholar
  89. Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson BM (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:231–334Google Scholar
  90. Murakami T, Ichimoto I, Tstsumom C (1973) Microbiological conversion of linalool. Nippon Nogei Kagaku Kaishi 47:699–703CrossRefGoogle Scholar
  91. Nakajima O, Iriye R, Hayashi T (1978) Conversion of (−)-menthone by Pseudomonas putida strain YK-2: metabolic intermediate and stereochemical structure of the metabolic products. Nippon Nagei Kagaku Kaishi 52:167–174CrossRefGoogle Scholar
  92. Narbad A, Gasson MJ (1998) Metabolism of ferulic acid to vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiol 144:1397–1405CrossRefGoogle Scholar
  93. Narushima H, Omori T, Minoda Y (1982) Microbial oxidation of 0-myrcene. In: Vezina C, Singh K (eds) Advances in biotechnology, vol 3. Pergamon Press: Oxford, pp 525–531Google Scholar
  94. Noma Y (1977) Conversion of the analogues of carvone and dihydrocarvone by Pseudomonas ovalis, strain 6–1, Biochemical reduction of terpenes, part VII. Nippon Nogeikagaku Kaishi 51:463–470CrossRefGoogle Scholar
  95. Noma Y, Nonomura S, Sakai H (1974) Conversion of (−)-carvotanacetone and (+)-carvotanacetone by Pseudomonas ovalis, strain 6–1. Agric Biol Chem 38:1637–1642CrossRefGoogle Scholar
  96. Noma Y, Nonomura S, Sakai H (1975) Epimerization of (−)-isodihydrocarvone to (−)-dihydrocarvone by Pseudomonas fragi IFO 3458. Agric Biol Chem 39:437–441CrossRefGoogle Scholar
  97. Oh B-T, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodg 14:309–319CrossRefGoogle Scholar
  98. Overhage J, Priefert H, Steinbüchel A (1999a) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Environ Microbiol 52:820–828Google Scholar
  99. Overhage J, Priefert H, Steinbüchel A (1999b) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65:4837–4847Google Scholar
  100. Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, edn. Springer, New York, pp 3071–3085Google Scholar
  101. Palleroni NJ (2003) Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiol 149:1–7CrossRefGoogle Scholar
  102. Palleroni NJ, Doudoroff M, Stanier RY, Solanes RE, Mandel M (1970) Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol 60:215–231Google Scholar
  103. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339CrossRefGoogle Scholar
  104. Peix A, Ramírez-Bahena M-H, Velázquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Inf Gen Evol 9:1132–1147Google Scholar
  105. Pimentel MR, Molina G, Bertucci TCP, Pastore GM (2012) Biotransformation of citronellol in rose oxide by Pseudomonas spp. Chem Eng Trans 27:295–300Google Scholar
  106. Rabenhorst J (1996) Production of methoxyphenol-type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbiol Biotechnol 46:470–474CrossRefGoogle Scholar
  107. Rama Devi J (1979) Microbiological transformations of terpenes. 26. Microbiological transformation of caryophyllene. Indian J Biochem Biophys 16:76–79Google Scholar
  108. Rama Devi J, Bhattacharyya PK (1977) Microbiological transformations of terpenes. Part XXIV. Pathways of degradation of linalool, geraniol, nerol and limonene by Pseudomonas incognita, linalool strain. Indian J Biochem Biophys 14:359–363Google Scholar
  109. Rama Devi J, Bhattacharyya PK (1978) Molecular rearrangements in the microbiological transformations of terpenes and the chemical logic of microbial processes. J Indian Chem Soc 55:1131–1137Google Scholar
  110. Rhodes PM, Winskill N (1985) Microbiological process for the preparation of 1-carvone. US Patent 4495284Google Scholar
  111. Sakano K, Mukouyama M, Hayashi T (1999) Process for producing l-aspartic acid. US Patent 5939296Google Scholar
  112. Sangodkar UMX, Mavinkurve S (1982) Isolation and characterization of α-santonin assimilating Pseudomonad. J Biosci 4:79–84CrossRefGoogle Scholar
  113. Sangodkar UMX, Mavinkurve S (1984) Environmental and nutritional requirements for optimal growth and transformation of alpha-santonin by Pseudomonas cichorii strain. S. Ind J Microbiol 2:202–206Google Scholar
  114. Sawamura N, Shima S, Sakai H (1976) Conversion of (−)-menthone by Pseudomonas fluorescens M-2. Agric Biol Chem 40:649–653CrossRefGoogle Scholar
  115. Schafer SL, Barrett WC, Kallarakal AT, Mitra B, Kozarich JW, Gerlt JA, Clifton JG, Petsko GA, Kenyon GL (1996) Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant. Biochem 35:5662–5669CrossRefGoogle Scholar
  116. Schindler JE, Schmid RD (1982) Fragrance or aroma chemicals—microbial synthesis and enzymatic transformation—a review. Process Biochem 17:2–8Google Scholar
  117. Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavours and fragrances—chemistry, bioprocessing, sustainability, edn. Springer, Heidelberg, pp 507–574CrossRefGoogle Scholar
  118. Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm HJ (ed) Biotechnology, edn. Wiley, Weinheim, pp 374–422Google Scholar
  119. Schwammle B, Winkelhausen E, Kuzmanova S, Steiner W (2001) Isolation of carvacrol assimilating microorganisms. Food Technol Biotechnol 39:341–345Google Scholar
  120. Selifonov S (2006) Ketocampholenic acid derivatives and their use in fragrance applications. US Patent 0111270A1Google Scholar
  121. Senuma M, Osamu O, Nobuyuki S, Masakatsu F, Tetsuya T (1989) Industrial production of d-aspartic acid and l-alanine from dl-aspartic acid using a pressurized column reactor containing immobilized Pseudomonas dacunhae cells. J Ferment Bioeng 67:233–237CrossRefGoogle Scholar
  122. Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198CrossRefGoogle Scholar
  123. Seubert W (1960) Degradation of isoprenoid compounds by microorganisms: I. Isolation and characterization of an isoprenoid degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79:426–434Google Scholar
  124. Seubert W, Fass E (1964) Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of beta-isohexenylglutaconyl-CoA-hydratase and beta-hydroxy-beta-iso-hexenylglutaryl-CoA-lyase. Biochem Z 341:23–34Google Scholar
  125. Seubert W, Remberger U (1963) Studies on the bacterial degradation of isoprenoids. II. The role of carbon dioxide. Biochem Z 338:245–264Google Scholar
  126. Seubert W, Fass E, Remberger U (1963) Studies on the bacterial degradation of isoprenoids. III. Purification and properties of geranyl carboxylase. Biochem Z 338:265–275Google Scholar
  127. Shukla OP, Bhattacharyya PK (1968) Microbiological transformations of terpenes: part I—pathway of degradation of α- and β-pinene by a soil Pseudomonad (PL-strain). Indian J Biochem 5:92–98Google Scholar
  128. Shukla OP, Moholay MN, Bhattacharyya PK (1968) Microbiological transformation of terpenes. X. Fermentation of α- and β-pinenes. Ind J Biochem 5:79–91Google Scholar
  129. Siedenburg G., Breuer M, Jendrossek D (2012) Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Appl Microbiol Biotechnol. doi: 10.1007/s00253-012-4008-1
  130. Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org Biomol Chem 3:57–64CrossRefGoogle Scholar
  131. Speelmans G, Bijlsma A, Eggink G (1998) Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 50:538–544CrossRefGoogle Scholar
  132. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsenk IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefGoogle Scholar
  133. Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses. Wiley, WeinheimCrossRefGoogle Scholar
  134. Suresh B, Ritu T, Ravishankar GA (2006) Biotransformations as applicable to food industries. In: Shetty K, Paliyath G, Pometto A, Levin RD (eds) Food biotechnology, edn. Marcel Dekker, New York, pp 1655–1690Google Scholar
  135. Takamura Y, Kitamura I, Kono K, Ozaki A (1968) Process for producing l-aspartic acid. US Patent 3391059Google Scholar
  136. Tandlich R, Brezná B, Dercová K (2000) The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere 44:1547–1555CrossRefGoogle Scholar
  137. Teunissen MJ, De Bont JAM (1995) Will terpenes be of any significance in future biotechnology. In: Etiévant P, Schreier P (eds) Bioflavor ’95. Cedex, Versailles, pp 329–330Google Scholar
  138. Tozoni D, Zacaria J, Vanderlinde R, Longaray Delamare AP, Echeverrigaray S (2010) Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105. Electr J Biotechnol 13:1–7Google Scholar
  139. Trudgill PW (1990) Microbial metabolism of terpenes—recent developments. Biodegrad 1:93–105CrossRefGoogle Scholar
  140. Tsou AY, Ransom SC, Gerlt JA, Buechter DD, Babbitt PC, Kenyon GL (1990) Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli. Biochem 29:9856–9862CrossRefGoogle Scholar
  141. Tsukamoto Y, Nonomura S, Sakai H (1975) Formation of p-cis-menthan-1-ol from p-menthane by Pseudomonas mendocina SF. Agric Biol Chem 39:617–620CrossRefGoogle Scholar
  142. Tudroszen NJ, Kelly DP, Millis NF (1977) α-Pinene metabolism by Pseudomonas putida. Biochemic J 168:315–318Google Scholar
  143. Unno T, Kim SJ, Kanaly RA, Ahn JN, Kang SI, Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55:8556–8561CrossRefGoogle Scholar
  144. Van der Werf MJ, Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. Adv Biochem Eng Biotechnol 55:147–177Google Scholar
  145. Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 77:1323–1332CrossRefGoogle Scholar
  146. Vandenbergh PA, Cole RL (1986) Plasmid involvement in linalool metabolism by Pseudomonas fluorescens. Appl Environ Microbiol 52:939–940Google Scholar
  147. Walton NJ, Narbad A, Faulds CB, Williamson G (2000) Novel approaches to the biosynthesis of vanillin. Curr Opi Biotechnol 11:490–496CrossRefGoogle Scholar
  148. Washisu Y, Aida T, Hashimoto N, Kanisawa T (1993) Production of vanillin and its related compound by fermentation. JP Patent 5227980Google Scholar
  149. Wigmore GJ, Ribbons DW (1980) p-Cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs. J Bacteriol 143:816–824Google Scholar
  150. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030CrossRefGoogle Scholar
  151. Yoo SK, Day DF (2002) Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. strain PIN. Process Biochem 37:739–745CrossRefGoogle Scholar
  152. Yoshimoto T, Samejima M, Hanyu N, Koma T (1990) Dioxygenase for styrene cleavage manufactured by Pseudomonas. JP Patent 2195871Google Scholar
  153. Zhang Y, Mao Y, Li K, Dong P, Liang R, Luo X (2011) Models of Pseudomonas growth kinetics and shelf life in chilled longissimus dorsi muscles of beef. Asian-Aust J Anim Sci 24:713–722CrossRefGoogle Scholar
  154. Zorn H, Neuser F, Berger RG (2004) Degradation of α-pinene oxide and [2H7]-2,5,6-trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761. J Biotechnol 107:255–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gustavo Molina
    • 1
    Email author
  • Mariana R. Pimentel
    • 1
  • Gláucia M. Pastore
    • 1
  1. 1.Laboratory of Bioflavors, Department of Food Science, Faculty of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations