Applied Microbiology and Biotechnology

, Volume 97, Issue 10, pp 4577–4587 | Cite as

Immobilization of nisin producer Lactococcus lactis strains to chitin with surface-displayed chitin-binding domain

  • Ömer ŞimşekEmail author
  • Seba Sabanoğlu
  • Ahmet Hilmi Çon
  • Nihat Karasu
  • Mustafa Akçelik
  • Per E. J. Saris
Applied microbial and cell physiology


In this study, nisin producer Lactococcus lactis strains displaying cell surface chitin-binding domain (ChBD) and capable of immobilizing to chitin flakes were constructed. To obtain ChBD-based cell immobilization, Usp45 signal sequence with ChBD of chitinase A1 enzyme from Bacillus circulans was fused with different lengths of PrtP (153, 344, and 800 aa) or AcmA (242 aa) anchors derived from L. lactis. According to the whole cell ELISA analysis, ChBD was successfully expressed on the surface of L. lactis cells. Scanning electron microscope observations supported the conclusion of the binding analysis that L. lactis cells expressing the ChBD with long PrtP anchor (800 aa) did bind to chitin surfaces more efficiently than cells with the other ChBD anchors. The attained binding affinity of nisin producers for chitin flakes retained them in the fermentation during medium changes and enabled storage for sequential productions. Initial nisin production was stably maintained with many cycles. These results demonstrate that an efficient immobilization of L. lactis cells to chitin is possible for industrial scale repeated cycle or continuous nisin fermentation.


Lactococcus lactis Nisin Chitin-binding domain Immobilization 



This work was supported by the Scientific and Technological Council of Turkey (TÜBİTAK) with the project 109 O 589.


  1. Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kabala M, Miikkulainen-Lahti T, Palva A (2002) Surface-display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 68:5943–5951CrossRefGoogle Scholar
  2. Bertrand N, Fliss I, Lacroix C (2001) High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int Dairy J 11:953–960CrossRefGoogle Scholar
  3. Chong SFB, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perker FR, Benner J, Kucera RB, Hirvonen CA, Pelletier H, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281CrossRefGoogle Scholar
  4. de Vuyst L, Vandamme EJ (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J Gen Microbiol 138:571–578Google Scholar
  5. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin nisin. Antonie van Leeuwenhoek 69:193–202CrossRefGoogle Scholar
  6. Desjardins P, Meghrous J, Lacroix C (2001) Effect of aeration and dilution rate on Nisin Z production during continuous fermentation with free and immobilizied Lactococcus lactis UL719 in supplemented whey permeate. Int Dairy J 11:943–951CrossRefGoogle Scholar
  7. Fischetti VA, Pancholi V, Schneewind O (1990) Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol 4:1603–1605CrossRefGoogle Scholar
  8. Gasson MJ (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol Lett 21:7–10CrossRefGoogle Scholar
  9. Hashimoto M, Ikegami T, Seino S, Obuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T (2000) Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol 182:3045–3054CrossRefGoogle Scholar
  10. Holo H, Nes IF (1989) High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123Google Scholar
  11. Ikegami T, Okada T, Hashimoto M, Seino S, Watanabe T, Shirakawa W (2000) Solution structure of the chitin binding domain of Bacillus circulans WL-12 chitinase A1. J Biol Chem 275:13654–13661Google Scholar
  12. Kiwaki M, Ikemura H, Shimizu-Kadota M, Hirashima A (1989) Molecular characterization of a cell-wall associated proteinase gene from Streptococcus lactis NCDO763. Mol Microbiol 3:359–369CrossRefGoogle Scholar
  13. Krüger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, van Dollenweerd C, Ma JK, Hammarström L (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20:702–706CrossRefGoogle Scholar
  14. Kylä-Nikkilä K, Alakuijala U, Saris PEJ (2010) Immobilization of Lactococcus lactis to cellulosic material by cellulose-binding domain of Cellvibrio japonicus. J Appl Microbiol 109:1274–1283CrossRefGoogle Scholar
  15. Le Loir Y, Gruss A, Ehrlich SD, Langella P (1998) A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180:1895–1903Google Scholar
  16. Lindholm A, Smeds A, Palva A (2004) Receptor binding domain of Escherichia coli F18 fimbrial adhesion FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70:2061–2071CrossRefGoogle Scholar
  17. Liu X, Chung YK, Yang ST, Yousef AE (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40:13–24CrossRefGoogle Scholar
  18. Maassen CBM, Laman JD, Heijne den Bak-Glashouwer MJ, Tielen FL, van Holten-Neelen JCPA, Hoogteij-ling L, Antonissen C, Leer RJ, Pouwels PH, Boersma WJA, Shaw DM (1999) Instruments for oral disease-intervention strategies recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17:2117–2128CrossRefGoogle Scholar
  19. Morello E, Bermudez-Humarin LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58CrossRefGoogle Scholar
  20. Qiao M, Immonen T, Koponen O, Saris PEJ (1995) The cellular location and effect on nisin immunity of the NisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L. lactis. FEMS Microbiol Lett 131:75–80CrossRefGoogle Scholar
  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  22. Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000) Continuous prodution of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89:573–579CrossRefGoogle Scholar
  23. Sibakov M, Koivula T, von Wright A, Palva I (1991) Secretion of TEM β-lactomase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 57:341–348Google Scholar
  24. Şimşek Ö, Saris PEJ (2008) Cycle changing the medium results in increased nisin productivity per cell in Lactococcus lactis. Biotechnol Lett 31:415–421Google Scholar
  25. Şimşek Ö, Çon AH, Akkoç N, Saris PEJ, Akçelik M (2009) Influence of growth conditions on the nisin production of bioengineered strains. J Ind Microbiol Biotech 36:481–490CrossRefGoogle Scholar
  26. Sonomoto K, Chinachoti N, Endo N, Ishizaki A (2000) Biosynthetic production of nisin Z by immobilized Lactococcus lactis IO-1. J Mol Cat B: Enzymatic 10:325–334CrossRefGoogle Scholar
  27. Strauss A, Götz F (1996) In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol Microbiol 21:491–500CrossRefGoogle Scholar
  28. Takala TM, Saris PEJ (2007) Nisin: past, present and future. In: Riley MA, Gillor O (eds) Research and Applications of Bacteriocins. Horrizon, Bioscience, pp 181–213Google Scholar
  29. Tomme P, Boraston A, McLean B, Kormos I, Creagh AL, Sturch K, Gilkes NR, Haynes CA (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B: Biomed Sci Appl 715:283–296CrossRefGoogle Scholar
  30. Tramer J, Fowler GG (1964) Estimation of nisin in foods. J Sci Food Agri 15:522–528CrossRefGoogle Scholar
  31. van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95: 155–160Google Scholar
  32. Wan J, Hickey W, Conventry MJ (1995) Continuous production of bacteriocins, brevicin, nisin and pediocin, using calcium alginate-immobilized bacteria. J Appl Bacteriol 79:671–676CrossRefGoogle Scholar
  33. Wang JY, Chao YP (2006) Immobilization of cells with surface-displayed chitin binding domain. Appl Environ Microbiol 72:927–931CrossRefGoogle Scholar
  34. Wen C, Tseng CS, Cheng CY, Li YK (2002) Purification characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35:213–219CrossRefGoogle Scholar
  35. Wirawan RE, Klesse NA, Jack RW, Tagg JR (2006) Molecular characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72:1148–1156CrossRefGoogle Scholar
  36. Wu ML, Chuang YL, Chen JP, Chen CS, Chang MC (2001) Identification and characterization of the three chitin binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101. Appl Environ Microbiol 67:5100–5106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ömer Şimşek
    • 1
    Email author
  • Seba Sabanoğlu
    • 1
  • Ahmet Hilmi Çon
    • 2
  • Nihat Karasu
    • 1
  • Mustafa Akçelik
    • 3
  • Per E. J. Saris
    • 4
  1. 1.Department of Food Engineering, Faculty of EngineeringUniversity of PamukkaleDenizliTurkey
  2. 2.Department of Food Engineering, Faculty of EngineeringUniversity of Ondokuz MayisSamsunTurkey
  3. 3.Department of Biology, Faculty of ScienceUniversity of AnkaraAnkaraTurkey
  4. 4.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations