Applied Microbiology and Biotechnology

, Volume 97, Issue 4, pp 1407–1424 | Cite as

Microbial production of poly(hydroxybutyrate) from C1 carbon sources

  • Kianoush Khosravi-Darani
  • Zahra-Beigom Mokhtari
  • Tomohito Amai
  • Kenji Tanaka
Mini-Review

Abstract

Polyhydroxybutyrate (PHB) is an attractive substitute for petrochemical plastic due to its similar properties, biocompatibility, and biodegradability. The cost of scaled-up PHB production inhibits its widespread usage. Intensive researches are growing to reduce costs and improve thermomechanical, physical, and processing properties of this green biopolymer. Among cheap substrates which are used for reducing total cost of PHB production, some C1 carbon sources, e.g., methane, methanol, and CO2 have received a great deal of attention due to their serious role in greenhouse problem. This article reviews the fundamentals of strategies for reducing PHA production and moves on to the applications of several cheap substrates with a special emphasis on methane, methanol, and CO2. Also, some explanation for involved microorganisms including the hydrogen-oxidizing bacteria and methanotrophs, their history, culture condition, and nutritional requirements are given. After description of some important strains among the hydrogen-oxidizing and methanotrophic producers of PHB, the article is focused on limitations, threats, and opportunities for application and their future trends.

Keywords

Polyhydroxybutyrate C1 carbon sources Methanol Methane CO2 

References

  1. Ackermann JU, Babel W (1997) Growth-associated synthesis of poly (hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of internal bottleneck. Appl Microbiol Biotechnol 47:144–149CrossRefGoogle Scholar
  2. Ackermann JU, Babel W (1998) Approaches to increase the economy of the PHB production. Polymer Degrad Stabil 59:183–186CrossRefGoogle Scholar
  3. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice (review). J Chem Technol Biotechnol 85:732–743CrossRefGoogle Scholar
  4. Albuquerque MGE, Eiro M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421CrossRefGoogle Scholar
  5. Ammann ECB, Reed L, Durichek JE (1968) Gas consumption and growth rate of Hydrogenomonas eutropha in continuous culture. Appl Microbiol 16:822–826Google Scholar
  6. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  7. Anderson AJ, Williams DR, Taidi B, Dawes EA, Ewing DF (1992) Studies on copolyester synthesis by Rhodoccocus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated by Methylobacterium extorquens and Alcaligenes etrophus. FEMS Microbiol Rev 103:93–102CrossRefGoogle Scholar
  8. Anthony C (1982) The biochemistry of methylotrophs. Academic, New YorkGoogle Scholar
  9. Aragno M, Schlegel HG (1992) The mesophilic hydrogen oxidizing (Knallgas) bacteria. In: Balows A, Triiper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 344–384Google Scholar
  10. Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly(hydroxybutyrate) by cyanobacteria the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42CrossRefGoogle Scholar
  11. Asenjo JA, Suk J (1986) Microbial conversion of methaneintopoly-beta-hydroxybutrate (PHB)-growth and intracellular product accumulation in a type-II methanotroph. J Ferment Technol 64:271–278CrossRefGoogle Scholar
  12. Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016CrossRefGoogle Scholar
  13. Babel W (1992) Pecularities of methylotrophs concerning over flow metabolism, especially the synthesis of polyhydroxyalkanoates. FEMS Microbiol Rev 103:141–148CrossRefGoogle Scholar
  14. Babel W, Mothes G (1994) Methylobacterium rhodesianum MB 126 possesses two acetoacetyl-CoA reductases. Arch Microbiol 161:277–280Google Scholar
  15. Bae S, Kwak K, Kim S, Chung S, Igarashi Y (2001) Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. J Biosci Bioeng 91:442–448Google Scholar
  16. Bengtsson S, Hallquist J, Werker A, Welander T (2007) Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production. J Biochem Eng 40:492–499CrossRefGoogle Scholar
  17. Bhubalan K, Loo CY, Lee WH, Yamamoto T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polymer Degrad Stabil 93:17–23CrossRefGoogle Scholar
  18. Bongers L (1970) Energy generation and utilization in hydrogen bacteria. J Bacteriol 104:145–151Google Scholar
  19. Bormann EJ, Leißner M, Roth M, Beer B, Metzner K (1998) Production of polyhydroxybutyrate by Ralstonia eutropha from protein hydrolysates. Appl Microbiol Biotechnol 50:604–607CrossRefGoogle Scholar
  20. Bourque D, Ouellette B, Andre G, Groleau D (1992) Production of poly-β-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens. Appl Microbiol Biotechnol 37:7–12CrossRefGoogle Scholar
  21. Bourque D, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-β-hydroxybutyrate (PHB) from Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376CrossRefGoogle Scholar
  22. Bowman JP (2001) Family I. Methylococcaceae and Family V. Methylocystaceae. In: Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 256–270, pp. 411–420Google Scholar
  23. Bowman JP (2006) The methanotrophs-the families Methylococcacceae and Methylocystaceae. In: The prokaryotes a: handbook on the biology of bacteria. Springer, NewYork, pp 266–289Google Scholar
  24. Bowman JP, Sly LI, Nichols PD, Hayward A (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753CrossRefGoogle Scholar
  25. Brandi H, Gross RA, Lenz RW, Fuller RC (1990) Plastic from bacteria and for bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93Google Scholar
  26. Braunegg G, Lefebvre G, Genser KF (1998) Poly hydroxyalkanoate, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161CrossRefGoogle Scholar
  27. Budde CF, Riedel SL, Hübner F, Risch S, Popović MK, ChoKyun R, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89:1611–1619CrossRefGoogle Scholar
  28. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250CrossRefGoogle Scholar
  29. Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807CrossRefGoogle Scholar
  30. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates (review). J Biosci Bioeng 110:621–632CrossRefGoogle Scholar
  31. Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrateco-3-hydroxyvalerate by Haloferax mediterranei. Process Biochem 41:2289–2296CrossRefGoogle Scholar
  32. Choi J, Lee SY (1997) Process analysis and economic evaluation for PHB production by fermentation. Bioprocess Eng 17:335–342CrossRefGoogle Scholar
  33. Choi J, Lee SY (1999a) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21CrossRefGoogle Scholar
  34. Choi J, Lee SY (1999b) High-level production of poly(3-hydroxybutyrateco-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368Google Scholar
  35. Choi J, Kim JH, Daneial M, Lebeault JM (1989) Optimization of growth medium and poly-β-hydroxybutyric acid production from methanol in Methylobacterium organophilium. Korean J Appl Microbiol Bioeng 17:392–396Google Scholar
  36. Dalton H (1981) Methane mono-oxygenase from a variety of microbes. In: Microbial growth on C, compounds.Heyden & Son, London, pp 1–10Google Scholar
  37. Daniel M, Choi JH, Kim JH, Lebeault JM (1992) Effect of nutrient deficiency on accumulation and relative molecular weight of poly-β-hydroxybutyric acid by methylotrophic bacterium, Pseudomonas 135. Appl Microbiol Biotechnol 37:702–706Google Scholar
  38. Dedysh SN (2002) Methanotrophic bacteria of acids phagnum bogs. Mikrobiologiia 71:741–754Google Scholar
  39. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156CrossRefGoogle Scholar
  40. Di Donato P, Anzelmo G, Tommonaro G, Fiorentino G, Nicolaus B, Poli A (2009) Vegetable wastes as suitable biomass feedstock for biorefineries. New Biotechnol 25(Suppl):S257CrossRefGoogle Scholar
  41. Dobroth ZT, Hu S, Coats ER, McDonald RG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102:3352–3359CrossRefGoogle Scholar
  42. Doi Y (1990) Microbial polyesters. VHC Publishers, New YorkGoogle Scholar
  43. Doi Y, Steinbüchel A (2002) Biopolymers. Wiley, WeinheimGoogle Scholar
  44. Doronina NV, Ezhov VA, Trotsenko YA (2008) Growth of Methylobacteriumtrichosporium OB3b on methanol and poly-β-hydroxybutyrate biosynthesis. Appl Biochem Microbiol 44:182–184CrossRefGoogle Scholar
  45. Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88:59–65CrossRefGoogle Scholar
  46. Du G, Chen LXL, Yu J (2004) High-efficiency production of bioplastics from biodegradable organic solids. J Polym Environ 12:89–94CrossRefGoogle Scholar
  47. Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw. Materials Curr Chem Biol 6(1):14–25Google Scholar
  48. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239CrossRefGoogle Scholar
  49. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882CrossRefGoogle Scholar
  50. Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 103:231–236CrossRefGoogle Scholar
  51. Follner CG, Babel W, Valentin HE, Steinbüchel A (1993) Expression of polyhydroxy alkanoic-acid-biosynthesis genes in methylotrophic bacteria relying on the ribulose monophosphate pathway. Appl Microbiol Biotechnol 40:284–291CrossRefGoogle Scholar
  52. Foster JF, Litchfield JH (1964) A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space systems. Biotechnol Bioeng 6:44l–456lCrossRefGoogle Scholar
  53. Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336CrossRefGoogle Scholar
  54. Ganduri VSRK, Ghosh S, Patnaik PR (2005) Mixing control as a device to increase PHB production in batch fermentation with co-cultures of lactobacillus delbrueckii and Ralstonia eutropha. Process Biochem 40:257–264CrossRefGoogle Scholar
  55. Ghatnekar MS, Pai JS, Ganesh M (2002) Production and recovery of poly-3-hydroxybutyrate from Methylobacterium sp V49. J Chem Technol Biotechnol 77:444–448CrossRefGoogle Scholar
  56. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 15:201–207CrossRefGoogle Scholar
  57. Govorukhina NI, Trotsenko YA (1991) Poly-β-hydroxybutyrate contents of methylotrophic bacteria with different routes methanol assimilation. Appl Biochem Microbiol 27:80–83Google Scholar
  58. Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17CrossRefGoogle Scholar
  59. Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enz Microbial Technol 25:132–141CrossRefGoogle Scholar
  60. Haas R, Jin B, Zepf FT (2008) Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256CrossRefGoogle Scholar
  61. Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812CrossRefGoogle Scholar
  62. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471Google Scholar
  63. Hayashi NR, Peerapornpisal Y, Nishihara H, Ishii M, Igarashi Y, Kodama T (1994) Isolation and cultivation of thermophilic cyanobacteria from hot springs of northern Thailand. J Ferment Bioeng 78:179–181CrossRefGoogle Scholar
  64. Haywood GW, Anderson AJ, Dawes EA (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476CrossRefGoogle Scholar
  65. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoates containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. Strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359Google Scholar
  66. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng 32:637–647CrossRefGoogle Scholar
  67. Heinzle E, Lafferty RM (1980) A kinetic model for growth and syntheseis of poly-β-hydroxybutyric acid (PHB) in Alkaligenes etruphus H16. Eur J Appl Microbiol Biotechnol 11:8–16CrossRefGoogle Scholar
  68. Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101:387–395CrossRefGoogle Scholar
  69. Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane utilizing mixed culture. J Appl Microbiol 105:1054–1061CrossRefGoogle Scholar
  70. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hyper-saline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826CrossRefGoogle Scholar
  71. Hilger U, Sattler K, Littkowsky U (1991) Studies on the growth associated accumulation of poly-hydroxybutyric acid with Methylobacterium rhodesianum Z. Zentralbl Mikrobiol 146:83–88Google Scholar
  72. Hofer P, Vermette P, Groleau D (2011) Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: combining desirable thermal properties with functionality. Biochem Eng J 54:26–33CrossRefGoogle Scholar
  73. Hori K, Kaneko M, Tanji Y, Xing XH, Unno H (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216CrossRefGoogle Scholar
  74. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706CrossRefGoogle Scholar
  75. Ibrahim MHA, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76:7890–7895CrossRefGoogle Scholar
  76. Ishii M, Miyake T, Satoh T, Sugiyama H, Oshima Y, Kodama T, Igarashi Y (1997) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch Microbiol 166:368–371Google Scholar
  77. Ishizaki A, Tanaka K (1990) Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system. J Ferment Bioeng 69:170–174CrossRefGoogle Scholar
  78. Ishizaki A, Tanaka K (1991) Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 70:254–25CrossRefGoogle Scholar
  79. Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly(hydroxybutyrate) from CO2. Appl Microbiol Biotechnol 57:6–12CrossRefGoogle Scholar
  80. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermo acidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304CrossRefGoogle Scholar
  81. Jing D, Jiaying X (2011) Biosynthesis of PHB, a new packaging material by methane-utilizing mixed culture HD6T. Adv Mater Res 380:244–247CrossRefGoogle Scholar
  82. João MBT, Cavalheiro M, Catarina MD, Grandfils C, Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc Biochem 44:509–515CrossRefGoogle Scholar
  83. Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 2012:317828Google Scholar
  84. Kaewkannetra P, Tanonkeo P, Tanamool V, Imai I (2008) Biorefinery of sweet sorghum juice into value added product of biopolymer. J Biotechnol 136:S412CrossRefGoogle Scholar
  85. Kallio RE, Harrington AA (1960) Sudanophilic granules and lipid of Pseudomonas methanica. J Bacteriol 80:321–324Google Scholar
  86. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104CrossRefGoogle Scholar
  87. Khanna S, Srivastava AK (2005a) Statistical media optimization studies for growth and PHB production by Ralstosnia eutropha. Process Biochem 40:2173–2182CrossRefGoogle Scholar
  88. Khanna S, Srivastava AK (2005b) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619CrossRefGoogle Scholar
  89. Khanna S, Srivastava AK (2005c) A simple structured mathematical model for biopolymer (PHB) production. Biotech Prog 21:830–838CrossRefGoogle Scholar
  90. Khosravi-Darani K, Vasheghani-Farahani E (2005a) Microorganisms and systems for production of poly(hydroxybutyrate) as a biodegradable polymer. Iran J Chem Chemical Eng 24:1–19Google Scholar
  91. Khosravi-Darani K, Vasheghani-Farahani E (2005b) Application of supercritical fluid extraction in biotechnology. Crit Rev Biotechnol 25:1–12CrossRefGoogle Scholar
  92. Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA (2003a) Application of the Plackett–Burman design for the optimization of poly(hydroxybutyrate) production by Ralstonia eutropha. Iran J Biotechnol 1:155–161Google Scholar
  93. Khosravi-Darani K, Vasheghani-Farahani E, Yamini Y (2003b) Solubility of poly hydroxybutyrate in supercritical carbon dioxide. J Chem Eng Data 48:860–863CrossRefGoogle Scholar
  94. Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA (2004a) Application of the Taguchi design for production of poly(hydroxybutyrate) by Ralstonia eutropha. Iran J Chem Chemical Eng 23:131–136Google Scholar
  95. Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA, Yamini Y (2004b) The effect of process variable on poly(hydroxybutyrate) recovery by supercritical fluid cell disruption. Biotechnol Prog 20:1757–1765CrossRefGoogle Scholar
  96. Khosravi-Darani K, Vasheghani-Farahani E, Tanaka K (2006) Hydrogen-oxidizing bacteria as poly(hydroxybutyrate) producers. Iran J Biotechnol 4:193–196Google Scholar
  97. Kim SB (2000) Production of poly(hydroxybutyrate) from inexpensive substrates. Enz Microb Technol 27:774–777CrossRefGoogle Scholar
  98. Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30CrossRefGoogle Scholar
  99. Kodama T, Igarashi Y, Minoda Y (1975) Isolation and culture conditions of a bacterium grown on hydrogen and carbon dioxide. Agr Biol Chem 36:77–82CrossRefGoogle Scholar
  100. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromol 6:561–565CrossRefGoogle Scholar
  101. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863CrossRefGoogle Scholar
  102. Koller M, Hesse P, Salerno A, Reiterer A, Braunegg G (2011) A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenerg 35:748–753CrossRefGoogle Scholar
  103. Korotkova N, Lidstrom ME (2001) Connection between poly-betahydroxybutyrate biosynthesis and growth on C1 and C2 compounds in the methylotroph Methylobacterium extorquens AM1. J Bacteriol 183:1038–1046CrossRefGoogle Scholar
  104. Kozhevnikov IV, Volova TG, Hai T, Steinbüchel A (2010) Cloning and molecular organization of the polyhydroxyalkanoic acid synthase gene (phaC) of Ralstonia eutropha strain B5786. Appl Biochem Microbiol 46:140–147CrossRefGoogle Scholar
  105. Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Exp Poly Lett 5:620–634CrossRefGoogle Scholar
  106. Lafferty RM (1979) Microbiological method. US Patent 4138291Google Scholar
  107. Lara LM, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53Google Scholar
  108. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefGoogle Scholar
  109. Lee SY, Choi J, Wong HH (1999) Recent advances in poly(hydroxylalkanoate) production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36CrossRefGoogle Scholar
  110. Lemos PC, Serafim LS, Reis MAM (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122:226–238CrossRefGoogle Scholar
  111. Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: The prokaryotes, volume 2: ecophysiology and biochemistry. Springer, New York, pp 618–634Google Scholar
  112. Listewnik HF, Wendlandt KD, Jechorek M, Mirschel G (2007) Process design for the microbial synthesis of poly-β-hydroxybutyrate (PHB) from natural gas. Eng Life Sci 7:278–282CrossRefGoogle Scholar
  113. López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011a) A viable antibiotic strategy against microbial contamination in biotechnologica production of polyhydroxyalkanoates from surplus whey. Biomass Bioenerg 35:748–753CrossRefGoogle Scholar
  114. López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011b) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80CrossRefGoogle Scholar
  115. Lu X, Zhang J, Wu Q, Chen GQ (2003) Enhanced production of poly (hydroxybutyrate-co-hydroxyhexanoate) via manipulation the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221:97–101CrossRefGoogle Scholar
  116. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53Google Scholar
  117. Malik KA, Schlegel HG (1980) Enrichment and isolation of new nitrogen-fixing hydrogen oxidizing bacteria. FEMS Microbiol Lett 8:101–104CrossRefGoogle Scholar
  118. Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioeng 82(5):512–514CrossRefGoogle Scholar
  119. Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y (2000) Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol A Enzy Eng Biotechnol 84–86:991–1002CrossRefGoogle Scholar
  120. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Khosravi-Darani K (2009a) Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour Technol 100:2436–2443CrossRefGoogle Scholar
  121. Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Shojaosadati SA, Karimzadeh R, Heidarzadeh-Vazifekhoran A (2009b) Effect of feed composition on PHB production from methanol by HCDC Methylobacterium extorquens (DSMZ 1340). J Chem Technol Biotechnol 84:1136–1139CrossRefGoogle Scholar
  122. Morgan-Sagastume F, Karlsson A, Johansson P, Pratt S, Boon N, Lant P, Werker A (2010) Production of polyhydroxyalk in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Res 44:5196–5211CrossRefGoogle Scholar
  123. Morse M, Liao Q, Criddle CS, Frank CW (2011) An aerobic biodegradation of the microbial copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): effects of comonomer content, processing history, and semi-crystalline morphology. Polym 52:547–555CrossRefGoogle Scholar
  124. Mothes G, Rivera HS, Babel B (1997) Competition between β-ketothiolase and citrate synthase during poly (hydroxybutyrate) synthesis in Methylobacterium rhodesianum. Arch Microbiol 166:405–410CrossRefGoogle Scholar
  125. Mothes G, Ackermann JU, Babel W (1998) Regulation of poly(β-hydroxybutyrate) synthesis in Methylobacterium rhodesianum MB 126 growing on methanol or fructose. Arch Microbiol 169:360–363CrossRefGoogle Scholar
  126. Mulchandani A, Luong JHT, Grom C (1989) Substrate inhibition kinetics for microbial growth and syntheseis of poly-β-hydroxybutyric acid in Alkaligenes etruphus ATCC17679. Appl Microbiol Biotechnol 30:11–17CrossRefGoogle Scholar
  127. Murrell J, Dalton H (1983) Nitrogen-fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486Google Scholar
  128. Nguyen HH, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from M. capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem 273:7957–7966CrossRefGoogle Scholar
  129. Nikel PI, Almeida AD, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agro-industrial by-products. Appl Environ Microbiol 72:3949–3954CrossRefGoogle Scholar
  130. Nishihara H, Igarashi Y, Kodama T (1991) Growth characteristics and high cell-density cultivation of a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium Hydrogenovibrio marinus strain MH-110 under a continuous gas-flow system. J Ferment Bioeng 72:358–361CrossRefGoogle Scholar
  131. Oakley C, Murrell J (1988) Nifh genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57CrossRefGoogle Scholar
  132. Omar S, Rayes A, Eqaab A, Viss I, Steinbüchel A (2011) Optimization of cell growth and poly(3-hydroxbutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23:1119–1123CrossRefGoogle Scholar
  133. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic, and taxonomic perspectives on methanotrophic Verrucomicrobia. Env Microbiol Rep 1:293–306CrossRefGoogle Scholar
  134. Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44:847–853CrossRefGoogle Scholar
  135. Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl Microbiol Biotechnol 83:659–668CrossRefGoogle Scholar
  136. Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of Poly(hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:81–86CrossRefGoogle Scholar
  137. Patnaik PR (2005) Perspectives in the modelling and optimization of PHB production by pure and mixed cultures. CritRev Biotechnol 25:153–171CrossRefGoogle Scholar
  138. Patwardhan PR, Srivastava AK (2004) Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochem Eng J 20:21–28CrossRefGoogle Scholar
  139. Pfluger AR, Wu WM, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of type I and type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102:9919–9926CrossRefGoogle Scholar
  140. Pieja AJ, Rostkowski KH, Criddle CS (2011a) Distribution and selection of poly-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb Ecol 62:564–573CrossRefGoogle Scholar
  141. Pieja AJ, Sundstrom ER, Criddle CS (2011b) Poly-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019CrossRefGoogle Scholar
  142. Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour Technol 107:385–392CrossRefGoogle Scholar
  143. Pilla S (2011). Handbook of bioplastics and biocomposites engineering applications. Wiley, New York, pp. 373–396Google Scholar
  144. Pinkwart M, Schneider K, Schlegel HG (1983) Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus. Biochim Biophys Acta Protein Struct Mol Enzymol 745:267–278CrossRefGoogle Scholar
  145. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, OpdenCamp HJ (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–878CrossRefGoogle Scholar
  146. Povolo S (2010) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80Google Scholar
  147. Povolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 197:1–9CrossRefGoogle Scholar
  148. Povolo S, Toffano P, Basaglia M, Casella S (2010) Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour Technol 101:7902–7907CrossRefGoogle Scholar
  149. Powell KA, Collinson BA, Richardson KR (1980) Microbiological process for the production of poly(beta-hydroxybutyric acid) and microorganisms for use therein. Eur Patent Appl 80300432.4Google Scholar
  150. Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157CrossRefGoogle Scholar
  151. Raje P, Srivastava AK (1998) Updated mathematical model fed-batch strategies for poly-β-hydroxybutyrate (PHB) ptoduction by Alkaligenes etruphus. Bioresour Technol 64:185–192CrossRefGoogle Scholar
  152. Ramadas NV, Singh SK, Soccol CR, Pandey A (2009) Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Braz Arch Biol Technol 52:17–23CrossRefGoogle Scholar
  153. Ramadas NV, Soccol CR, Pandey A (2010) A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus ncim 5149 under submerged fermentation using central composite design. Appl Biochem Biotechnol 162:996–1007CrossRefGoogle Scholar
  154. Reddy CSK, Ghai R, Rashmi R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146CrossRefGoogle Scholar
  155. Repask R (1966) Characteristics of hydrogen bacteria. Biotechnol Bioeng 8:217–235CrossRefGoogle Scholar
  156. Ribera RG, Monteoliva-Sanchez M, Ramos-Cormenzana A (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harbouring pSK2665 in waste water from olive oil mills (alpechin). J Biotechnol 4:116–119Google Scholar
  157. Rudnik E (2008). Compostable polymer materials. Elsevier, Amsterdam, p. 21Google Scholar
  158. Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol Bioeng 55:28–32CrossRefGoogle Scholar
  159. Santimano MC, Prabhu NN, Garg S (2009) PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. J Microbiol 4:89–96Google Scholar
  160. Schink B, Schlegel H (1978) Hydrogen, metabolism in aerobic hydrogen oxidizing bacteria. Biochimie 60(3):297–305Google Scholar
  161. Schlegel HG, Gottschalk G, Von Bartha R (1961) Formation and utilization of poly-β-hydroxybutyic acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463CrossRefGoogle Scholar
  162. Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria (review). Trends Biotechnol 27:107–115CrossRefGoogle Scholar
  163. Scott D, Brannan J, Higgins IJ (1981) The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b. J Gen Microbiol 125:63–72Google Scholar
  164. Shah NN, Hanna ML, Jackson KJ, Taylor RT (1996a) Batch cultivation of Methylosinus trichosporium OB3B: IV production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol Bioeng 45:229–238CrossRefGoogle Scholar
  165. Shah NN, Hanna ML, Taylor RT (1996b) Batch cultivation of Methylosinus trichosporiumOB3b. 5: characterization of poly(hydroxybutyrate) production under methane-dependent growth conditions. Biotechnol Bioeng 49:161–171CrossRefGoogle Scholar
  166. Shah-Hosseini S, Sadeghi MT, Khosravi-Darani K (2003) Simulation and model validation of batch poly(β-hydroxybutyrate) production process using Ralstonia eutropha. Iran J Chem Chemical Eng 22:35–41Google Scholar
  167. Sharma L, Mallick N (2008) Exploitation of municipal and aquacultural discharges for poly-β-hydroxybutyrate production in cyanobacterium, Nostoc muscorum. Res J Biotechnol 3:282–287Google Scholar
  168. Sheu DS, Wang YT, Lee CY (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiol 146:2019–2025Google Scholar
  169. Simon-Colin C, Raguenes G, Crassous P, Moppert X, Guezennec J (2008) A novel MCL-PHA produced on coprah oil by Pseudomonas guezennei biovar.tikehau, isolated from a ‘kopara’ mat of French Polynesia. Int J BiolMacromol 43:176–181CrossRefGoogle Scholar
  170. Slepecky RA, Law JH (1961) Synthesis and degradation of poly-b-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42Google Scholar
  171. Solaiman D, Ashby R, Hotchkiss A, Foglia T (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:57–162CrossRefGoogle Scholar
  172. Song H, Xin J, Zhang Y, Kong W, Xia C (2011) Poly-3-hydroxybutyrate production from methanol by Methylosinus trichosporium IMV3011 in the non-sterilized fed-batch fermentation. Afr J Microbiol Res 5:5022–5029Google Scholar
  173. Sonnleitner B, Heinzle E, Braunegg G, Lafferty RM (1979) Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alkaligenes etruphus H16 and Mycoplana rubera R14 with respect to the dissolved oxygen tension in ammonium limited batch-cultures. Eur J Appl Microbiol Biotechnol 7:1–10CrossRefGoogle Scholar
  174. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427CrossRefGoogle Scholar
  175. Steinbüchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  176. Sudesh K, Doi AY (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  177. Sugimoto T, Tsuge T, Tanaka K, Ishizaki A (1999) Control of acetic acid concentration by pH-stat continuous substrate feeding in heterotrophic culture phase of two-stage cultivation of Alcaligenes eutrophus for production of PHB from CO2, H2 and O2 under non-explosive condition. Biotechnol Bioeng 62:625–631CrossRefGoogle Scholar
  178. Suzuki T, Yamane T, Shimizu S (1986a) Mass production of poly-β-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl Microbiol Biotechnol 23:322–329CrossRefGoogle Scholar
  179. Suzuki T, Yamane T, Shimizu S (1986b) Kinetics and effect of nitrogen source feeding on production of poly(hydroxybutyric acid) by fed-batch culture. Appl Microbiol Biotechnol 23:366–369CrossRefGoogle Scholar
  180. Suzuki T, Yamane T, Shimizu S (1986c) Mass production of (poly-hydroxybutyric acid) by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374CrossRefGoogle Scholar
  181. Suzuki T, Deguchi H, Yamane T, Shimizu S, Gekko K (1988) Control of molecular weight of (poly-hydroxybutyric acid) produced in fed-batch culture of Protomonas extorquence. Appl Microbiol Biotechnol 27:487–491Google Scholar
  182. Suzuki H, Kishimoto M, Kamoshita Y, Omasa T, Katakura Y, Suga KI (2000) On-line control of feeding of medium components to attain high cell density. Bioprocess Eng 22:433–440CrossRefGoogle Scholar
  183. Taga N, Tanaka K, Ishizaki A (1997) Effects of rheological change by addition of carboxymethylcellulose in culture media of an air-lift fermentor on poly-d-3-hydroxybutyric acid productivity in autotrophic culture of hydrogen-oxidizing bacterium. Alcaligenes eutrophus. Biotechnol Bioeng 53:529–533CrossRefGoogle Scholar
  184. Taidi B, Anderson AJ, Dawes EA, Byrom D (1994) Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) production by Methylobacterium extorquens and Alcaligenes etrophus. Appl Microbiol Biotechnol 40:786–790CrossRefGoogle Scholar
  185. Takeshita T, Ishizaki A (1996) Influence of hydrogen limitation on gaseous substrate utilization in autotrophic culture of Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 81:83–86CrossRefGoogle Scholar
  186. Takeshita T, Tanaka K, Ishizaki A, Stanbury PF (1993a) Development of a dissolved hydrogen sensor and its application to evaluation of hydrogen mass transfer. J Ferment Bioeng 76:148–150CrossRefGoogle Scholar
  187. Takeshita T, Tanaka K, Ishizaki A, Stanbury PF (1993b) Studies on dissolved hydrogen behavior in autotrophic culture of A. eutrophus 17697T. J Fac Agr Kyushu Univ 38:55–64Google Scholar
  188. Tanaka K, Ishizaki A (1994) Production of poly-d-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 77:425–427CrossRefGoogle Scholar
  189. Tanaka K, Ishizaki A, Takeshita T, Kanemaru T, Shimoji T, Kawano T (1993) Equipment and operation for fermentative PHB production using gaseous substrate to guarantee safety from explosion. J Chem Eng Japan 26:225–227CrossRefGoogle Scholar
  190. Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(d-3-hydroxybutyrate) from CO2, H2, and CO2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275CrossRefGoogle Scholar
  191. Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169CrossRefGoogle Scholar
  192. Tohyama M, Patarinska T, Qiang Z, Shimizu K (2002) Modeling of the mixed culture and periodic control for PHB production. Biochem Eng J 10:157–173CrossRefGoogle Scholar
  193. US Environmental Protection Agency. Methane: sources and emissions. http://www.epa.gov/outreach/sources.html. Accessed April21, 2011
  194. Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alkohol by methylotrophic bacteria Paraccocus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 58:3574–3579Google Scholar
  195. Van Dien SJ, Lidstrom ME (2002) Stiochimetric model for evaluating the methabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C3 and C4 methabolism. Biotechnol Bioeng 78:296–312CrossRefGoogle Scholar
  196. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289CrossRefGoogle Scholar
  197. Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428Google Scholar
  198. Vecherskaya M, Dijkema C, Stams AJ (2001) Intracellular PHB conversion in a type II methanotroph studied by13CNMR. J Ind Microbiol Biotechnol 26:15–21CrossRefGoogle Scholar
  199. Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Chemicals from Microalgae, Cohen Z, London, Taylor and Francis, pp 292-352Google Scholar
  200. Volova TG, Voĭnov NA (2004) Study of Ralstonia eutropha culture producing polyhydroxyalkanoates on products of coal processing. Prikl Biokhim Mikrobiol 40:296–300Google Scholar
  201. Volova TG, Kalacheva GS, Altukhova OV (2002) Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide. App Microbiol Biotechnol 58:675–678CrossRefGoogle Scholar
  202. Wang J, Yu HQ (2007) Biosynthesis of polyhydroxybutyrate and extracellular polymeric substances by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol 75:871–878CrossRefGoogle Scholar
  203. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (1998) Production of PHB with a high molecular mass from methane. Poly Degrad Stabil 59:191–194CrossRefGoogle Scholar
  204. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133CrossRefGoogle Scholar
  205. Wendlandt KD, Geyer W, Mirschel G, Al-HajHemidi F (2005) Possibilities for controlling a PHB accumulation process using various analytical methods. J Biotechnol 117:119–129CrossRefGoogle Scholar
  206. Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology (review). Eng Life Sci 10:87–102Google Scholar
  207. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218Google Scholar
  208. Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in land fill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897Google Scholar
  209. Wong HH, Lee SY (1998) Poly(3-hydroxybutyrate) production from whey by high density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33CrossRefGoogle Scholar
  210. Wong AL, Chua H, Yu PH (2000) Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. App Biochem Biotechnol 84–86:843–857CrossRefGoogle Scholar
  211. Xin JY, Zhang YX, Zhang S, Xia CG, Li SB (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV3011. J Basic Microbiol 47:426–435CrossRefGoogle Scholar
  212. Xin J, Zhang Y, Dong J, Song H, Xia C (2011) An experimental study on molecular weight of polyhydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. Afr J Biotechnol 10:7078–7087CrossRefGoogle Scholar
  213. Yamane T (1993) Yield of poly-D-3-hydroxybutyrate from various, carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170CrossRefGoogle Scholar
  214. Yamane T, Chen XF, Ueda S (1996a) Growth associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium. Paracoccus denitrificans. Appl Environ Microbiol 62:380–384Google Scholar
  215. Yamane, Fukunaga M, Dee YW (1996b) Increase PHB production by high-cell-density fed-batch culture of Alcaligunes latus, a growth associated PHB producer. Biotechnol Bioeng 50:197–202CrossRefGoogle Scholar
  216. Yan S, Tyagi RD, Surampalli RY (2006) Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci Technol 53:175–180Google Scholar
  217. Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biot 73:211–218CrossRefGoogle Scholar
  218. Yoo S, Kim WS (1994) Cybernetic model for synthesis of poly-β-hydroxybutyric acid in Alcaligenes etrophus. Biotechnol Bioeng 43:1043–1051CrossRefGoogle Scholar
  219. Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from M. capsulatus (Bath). J Bacteriol 178:1018–1029Google Scholar
  220. Zhang Y, Xin J, Chen L, Song H, Xia C (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Natural Gas Chem 17:103–109CrossRefGoogle Scholar
  221. Zhao S, Fan C, Hu X, Chen J, Feng H (1993) The microbial production of polyhydroxybutyrate from methanol. Appl Biochem Biotechnol 39(40):191–199CrossRefGoogle Scholar
  222. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21CrossRefGoogle Scholar
  223. Zuniga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kianoush Khosravi-Darani
    • 1
  • Zahra-Beigom Mokhtari
    • 2
  • Tomohito Amai
    • 3
  • Kenji Tanaka
    • 3
  1. 1.Department of Food Technology Research, National Nutrition and Food Technology Research InstituteFaculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical ScienceTehranIran
  2. 2.Department of Chemical Engineering, School of Petroleum and Petrochemical EngineeringHakim Sabzevari UniversitySabzevarIran
  3. 3.Department of Biological and Environmental ChemistryFaculty of Humanity-Oriented Science and Engineering, Kinki UniversityIizuka-siJapan

Personalised recommendations