Applied Microbiology and Biotechnology

, Volume 97, Issue 19, pp 8547–8558

Covalently dimerized Camelidae antihuman TNFa single-domain antibodies expressed in yeast Pichia pastoris show superior neutralizing activity

  • Xuemei Ji
  • Wuguang Lu
  • Huiting Zhou
  • Dongju Han
  • Lin Yang
  • Haitao Wu
  • Jianfeng Li
  • Hongyan Liu
  • Jie Zhang
  • Peng Cao
  • Shuangquan Zhang
Biotechnologically relevant enzymes and proteins

Abstract

Antagonists of tumor necrosis factor alpha (TNFa) have revolutionized the treatment of selected inflammatory diseases. Recombination Camelidae variable heavy-chain domain-only TNFa antibodies (anti-TNF-VHH) have been developed to antagonize the action of human and murine TNFa. Here, we describe a strategy to obtain functional covalent dimer anti-TNF-VHH molecules with the C-terminal fusion of human IgG1 Fc domain named anti-TNF-VHH-Fc. The resulting fusion proteins were separately expressed by use of the pET28a vector in Escherichia coli(Ec) strain BL21 and the pPICZaA vector in Pichia pastoris(Pp) strain GS115, then purified by protein A affinity resin. Fc-engineered anti-EcTNF-VHH-Fc was about 40 kDa and anti-PpTNF-VHH-Fc was about 43 kDa. Monomeric VHH was also cloned and expressed in E. coli strain BL21, with the molecular weight of about 18 kDa. Enzyme-linked immunosorbent assay and L929 cell cytotoxicity assay demonstrated that the fusion protein anti-PpTNF-VHH-Fc blocked TNFa activity more effectively than either anti-EcTNF-VHH-Fc or monomeric anti-EcTNF-VHH protein. We suggest that efficient disulfide bond formation using the P. pastoris expression system improves the covalent dimer anti-TNF-VHH-Fc neutralizing activity.

Keywords

TNFa nanobody Human IgG1 Fc domain Pichia pastoris Escherichia coli 

References

  1. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665PubMedCrossRefGoogle Scholar
  2. Ahmadvand D, Rasaee MJ, Rahbarizadeh F, Mohammadi M (2008) Production and characterization of a high-affinity nanobody against human endoglin. Hybridoma Larchmt 27(5):353–360PubMedCrossRefGoogle Scholar
  3. Ameloot P, Brouckaert P (2004) Production and characterization of receptor-specific TNF muteins. Methods Mol Med 98:33–46PubMedGoogle Scholar
  4. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526PubMedCrossRefGoogle Scholar
  5. Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Finck BK (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343(22):1586–1593PubMedCrossRefGoogle Scholar
  6. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11(9):372–377PubMedCrossRefGoogle Scholar
  7. Cao P, Zhang S, Gong Z, Tang X, Cao M, Hu Y (2006) Development of a compact anti-BAFF antibody in Escherichia coli. Appl Microbiol Biotechnol 73(1):151–157PubMedCrossRefGoogle Scholar
  8. Cao P, Zhang S, Fang Z, Huang H, Bai P, Zhang Q, Luo C (2008) Generation of a fusion protein of the extracellular domain of BR3 with the Fc fragment of human IgG1 (sBR3-Fc) in Pichia pastoris as an antagonist for BLyS. Appl Microbiol Biotechnol 78(2):275–282PubMedCrossRefGoogle Scholar
  9. Chauhan AK, Arora D, Khanna N (1999) A novel feeding strategy for enhanced protein production by fed-batch fermentation in recombinant Pichia pastoris. Process Biochem 34:139–145CrossRefGoogle Scholar
  10. Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L, Hostens J, Revets H, Remaut E, Elewaut D, Rottiers P (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54(6):1856–1866PubMedCrossRefGoogle Scholar
  11. Els Conrath K, Lauwereys M, Wyns L, Muyldermans S (2001a) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276(10):7346–7350PubMedCrossRefGoogle Scholar
  12. Els Conrath K, Lauwereys M, Wyns L, Muyldermans S (2001b) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276(10):7346–7350PubMedCrossRefGoogle Scholar
  13. Emery P, Breedveld FC, Hall S, Durez P, Chang DJ, Robertson D, Singh A, Pedersen RD, Koenig AS, Freundlich B (2008) Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372(9636):375–382PubMedCrossRefGoogle Scholar
  14. Estell D (2006) Adapting industry practices for the rapid, large-scale manufacture of pharmaceutical proteins. Bridge 36:39–44Google Scholar
  15. Ezzine A, M’Hirsi El Adab S, Bouhaouala-Zahar B, Hmila I, Baciou L, Marzouki MN (2012) Efficient expression of the anti-AahI′ scorpion toxin nanobody under a new functional form in a Pichia pastoris system. Biotechnol Appl Biochem 59(1):15–21PubMedCrossRefGoogle Scholar
  16. Floss DM, Kipriyanov S, Conrad U, Scheller J (2009) Covalent dimerization of Camelidae anti-human TNF-alpha single domain antibodies by the constant kappa light chain domain improves neutralizing activity. Biotechnol Bioeng 106(1):161–166Google Scholar
  17. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78(1):11–21PubMedCrossRefGoogle Scholar
  18. Freyre FM, Vazquez JF, Ayala M, Canaan-Haden L, Bell H, Rodriquez I, Gonzalez A, Cintado A, Gavilondo JV (2000) Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris. J Biotechnol 76:157–163PubMedCrossRefGoogle Scholar
  19. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22PubMedCrossRefGoogle Scholar
  20. Harmsen MM, Van Solt CB, Fijten HP, Van Setten MC (2005) Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 23(41):4926–4934PubMedCrossRefGoogle Scholar
  21. Jauregui-Amezaga A, Turon F, Ordas I, Gallego M, Feu F, Ricart E, Panes J (2012) Risk of developing tuberculosis under anti-TNF treatment despite latent infection screening. J Crohns Colitis. doi:10.1016/j.crohns.2012.05.012
  22. Kosinski M, Kujawski SC, Martin R, Wanke LA, Buatti MC, Ware JE Jr, Perfetto EM (2002) Health-related quality of life in early rheumatoid arthritis: impact of disease and treatment response. Am J Manag Care 8(3):231–240PubMedGoogle Scholar
  23. McMahon MS, Ueki Y (2008) Does anti-TNF-alpha have a role in the treatment of osteoporosis? Bull NYU Hosp Jt Dis 66(4):280–281PubMedGoogle Scholar
  24. Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, Burge DJ (2000) Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356(9227):385–390PubMedCrossRefGoogle Scholar
  25. Migliore A, Massafra U, Carloni E, Padalino C, Martin Martin S, Lasaracina F, Dibiase N, Alimonti A, Granata M (2005) TNF-alpha blockade induce clinical remission in patients affected by polymyalgia rheumatica associated to diabetes mellitus and/or osteoporosis: a seven cases report. Eur Rev Med Pharmacol Sci 9(6):373–378PubMedGoogle Scholar
  26. Mitoma H, Horiuchi T, Hatta N (2005) Infliximab induces potent antiinflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology 128(2):376–392PubMedCrossRefGoogle Scholar
  27. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128(1–3):178–183PubMedCrossRefGoogle Scholar
  28. Nixon R, Bansback N, Brennan A (2007) The efficacy of inhibiting tumour necrosis factor alpha and interleukin 1 in patients with rheumatoid arthritis: a meta-analysis and adjusted indirect comparisons. Rheumatology Oxford 46(7):1140–1147PubMedCrossRefGoogle Scholar
  29. Olichon A, Schweizer D, Muyldermans S, de Marco A (2007) Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnol 7:7PubMedCrossRefGoogle Scholar
  30. Plagmann I, Chalaris A, Kruglov AA, Nedospasov S, Rosenstiel P, Rose-John S, Scheller J (2009) Transglutaminase-catalyzed covalent multimerization of Camelidae anti-human TNF single domain antibodies improves neutralizing activity. J Biotechnol 142(2):170–178PubMedCrossRefGoogle Scholar
  31. Powers DB, Amersdorfer P, Poul MA, Nielsen UB, Shalaby MR, Adams GP, Weiner LM, Marks JD (2001) Expression of single-chain Fv–Fc fusions in Pichia pastoris. J Immunol Methods 251:123–135PubMedCrossRefGoogle Scholar
  32. Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z (2011) Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 40(3):299–338PubMedCrossRefGoogle Scholar
  33. Reff ME, Heard C (2001) A review of modifications to recombinant antibodies: attempt to increase efficacy in oncology applications. Crit Rev Oncol Hematol 40(1):25–35PubMedCrossRefGoogle Scholar
  34. Ridder R, Schmitz R, Legay F, Gram H (1995) Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Biotechnology N Y 13(3):255–260PubMedCrossRefGoogle Scholar
  35. Rigby WF (2007) Drug insight: different mechanisms of action of tumor necrosis factor antagonists-passive-aggressive behavior? Nat Clin Pract Rheumatol 3(4):227–233PubMedCrossRefGoogle Scholar
  36. Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, De Haard HJ, Henegouwen PM VBe (2007) Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR nanobodies. Cancer Immunol Immunother 56(3):303–317PubMedCrossRefGoogle Scholar
  37. Sberna GCR, Henry A, Small DH (1996) Advantages of the methylotrophic yeast Pichia pastoris for high-level expression and purification of heterologous proteins. Austral Biotechnol 6:282–287Google Scholar
  38. Sevastsyanovich Y, Alfasi S, Cole J (2009) Recombinant protein production: a comparative view on host physiology. N Biotechnol 25(4):175–180PubMedCrossRefGoogle Scholar
  39. Son JH, Cha SW (2010) Anti-TNF-alpha therapy for ankylosing spondylitis. Clin Orthop Surg 2(1):28–33PubMedCrossRefGoogle Scholar
  40. Strand V, Sharp V, Koenig AS, Park G, Shi Y, Wang B, Zack DJ, Fiorentino D (2012) Comparison of health-related quality of life in rheumatoid arthritis, psoriatic arthritis and psoriasis and effects of etanercept treatment. Ann Rheum Dis 71(7):1143–1150PubMedCrossRefGoogle Scholar
  41. Urra JM, Arteta M, Gomez-Caturla A, Garcia-Duran F (2001) A chimeric anti-TNFalpha monoclonal antibody (cA2) in vivo removes TNFalpha-producing cells in Crohn’s disease. Hum Antibodies 10(2):91–94PubMedGoogle Scholar
  42. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E, Cuvelier C, Rottiers P (2009) Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3(1):49–56PubMedCrossRefGoogle Scholar
  43. Viola F, Civitelli F, Di Nardo G, Barbato MB, Borrelli O, Oliva S, Conte F, Cucchiara S (2009) Efficacy of adalimumab in moderate-to-severe pediatric Crohn’s disease. Am J Gastroenterol 104(10):2566–2571PubMedCrossRefGoogle Scholar
  44. Wiedmann MW, Mossner J, Baerwald C, Pierer M (2009) TNF alpha inhibition as treatment modality for certain rheumatologic and gastrointestinal diseases. Endocr Metab Immune Disord Drug Targets 9(3):295–314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xuemei Ji
    • 1
  • Wuguang Lu
    • 2
  • Huiting Zhou
    • 1
  • Dongju Han
    • 1
  • Lin Yang
    • 1
  • Haitao Wu
    • 1
  • Jianfeng Li
    • 1
  • Hongyan Liu
    • 1
  • Jie Zhang
    • 1
  • Peng Cao
    • 2
  • Shuangquan Zhang
    • 1
  1. 1.Jiang Su Province Key Laboratory for Molecular and Medical Biotechnology, Life Science CollegeNanjing Normal UniversityNanjingChina
  2. 2.Laboratory of Cellular and Molecular BiologyJiangsu Province Institute of Traditional Chinese MedicineNanjingChina

Personalised recommendations