Applied Microbiology and Biotechnology

, Volume 97, Issue 3, pp 979–991 | Cite as

What do we know about the yeast strains from the Brazilian fuel ethanol industry?

  • Bianca Eli Della-Bianca
  • Thiago Olitta Basso
  • Boris Ugarte Stambuk
  • Luiz Carlos Basso
  • Andreas Karoly Gombert


The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6–8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.


Yeast Fuel ethanol Saccharomyces cerevisiae Industrial microbiology Alcoholic fermentation 



We would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) for grants within the BIOEN framework and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for the scholarships provided.


  1. Altieri A (2012) Overview & perspectives: Brazilian sugarcane industry. Brazilian Sugarcane Industry Association. Accessed 26 Sep 2012
  2. Alves DMG (1994) Fatores que afetam a formação de ácidos orgânicos bem como outros parâmetros da fermentação alcoólica. Dissertation, Universidade de São PauloGoogle Scholar
  3. Alves DMG (2000) Respostas fisiológicas de duas linhagens de Saccharomyces cerevisiae frente ao potássio durante a fermentação alcoólica. Thesis, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  4. Amorim HV (2005) Fermentação alcoólica: Ciência & tecnologia, 1st edn. Fermentec, PiracicabaGoogle Scholar
  5. Amorim Neto HB, Yohannan BK, Bringhurst TA, Brosnan JM, Pearson SY, Walker JW, Walker GM (2009) Evaluation of a Brazilian fuel alcohol yeast strain for scotch whisky fermentations. J Inst Brew 115(3):198–207CrossRefGoogle Scholar
  6. Amorim HV, Basso LC (1991) PI9102738-1—processo para aumentar os teores alcoólicos do vinho e protéico da levedura após o térmico da fermentação. National Institute for Industrial Property of Brazil. Accessed 16 Oct 2012
  7. Amorim HV, Basso LC, Lopes ML (2004) Evolution of ethanol production in Brazil. In: Bryce JH, Stewart GG (eds) Distilled spirits—tradition and innovation. Nottingham Univ. Press, Nottingham, pp 143–148Google Scholar
  8. Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Austin GD, Kluhspies C, Kelsall DR (eds) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 39–46Google Scholar
  9. Amorim HV, Lopes M, de Castro Oliveira J, Buckeridge M, Goldman G (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267–1275. doi: 10.1007/s00253-011-3437-6 CrossRefGoogle Scholar
  10. Andrietta MGS, Andrietta SR, Steckelberg C, Stupiello ENA (2007) Bioethanol—Brazil, 30 years of Proalcool. Int Sugar J 109(1299):195–200Google Scholar
  11. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270. doi: 10.1101/gr.091777.109 CrossRefGoogle Scholar
  12. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol 15(13):1351–1357. doi: 10.1038/nbt1297-1351 CrossRefGoogle Scholar
  13. Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer R, Basso L, de Amorim H, de Oliveira A, Davis R, Ronaghi M, Gharizadeh B, Stambuk B (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics 287(6):485–494. doi: 10.1007/s00438-012-0695-7 CrossRefGoogle Scholar
  14. Badotti F, Belloch C, Rosa CA, Barrio E, Querol A (2010) Physiological and molecular characterisation of Saccharomyces cerevisiae cachaça strains isolated from different geographic regions in Brazil. World J Microbiol Biotechnol 26(4):579–587. doi: 10.1007/s11274-009-0206-0 CrossRefGoogle Scholar
  15. Basílio ACM, de Araújo PRL, de Morais JOF, de Silva EA, de Morais Jr MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56(4):322–326. doi: 10.1007/s00284-007-9085-5 CrossRefGoogle Scholar
  16. Basso LC, Amorim HV (1994) Estudo comparativo entre diferentes leveduras. Relat Anu Pesqui Ferment Alcool 14:71–114Google Scholar
  17. Basso LC, Amorim HV, Gutierrez LE (1988) Estudo comparativo entre os fermentos Fleischmann, IZ-1904 e M-300 A (TA). Relat Anu Pesqui Ferment Alcool 8:34–43Google Scholar
  18. Basso LC, Oliveira AJ, Orelli VFDM, Campos AA, Gallo CR, Amorim HV (1993) Dominância das leveduras contaminantes sobre as linhagens industriais avaliada pela técnica da cariotipagem. Paper presented at the V Congresso Nacional da STAB, 1993Google Scholar
  19. Basso LC, Amorim HV, Oliveira AJ (1996) Leveduras selecionadas: permanência no processo industrial monitorada pela técnica da cariotipagem. Relat Anu Pesqui Ferment Alcool 14:1–51Google Scholar
  20. Basso LC, Alves DMG, Amorim HV (1997) The antibacterial action of succinic acid produced by yeast during fermentation. Rev Microbiol 28:77–82Google Scholar
  21. Basso LC, Paulillo SCL, Rodrigues DA, Basso TO, Amorim HV, Walker GM (2004) Aluminium toxicity towards yeast fermentation and the protective effect of magnesium. Paper presented at the 11th International Congress on Yeast—Yeast in Science and Technology, Rio de Janeiro, 2004Google Scholar
  22. Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163. doi: 10.1111/j.1567-1364.2008.00428.x CrossRefGoogle Scholar
  23. Basso LC, Basso TO, Rocha SN (2011a) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production—recent developments and prospects. Intech, Rijeka, pp 85–100Google Scholar
  24. Basso TO, de Kok S, Dario M, do Espirito-Santo JCA, Müller G, Schlölg PS, Silva CP, Tonso A, Daran J-M, Gombert AK, van Maris AJA, Pronk JT, Stambuk BU (2011b) Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. 13(6):694-703. doi: 10.1016/j.ymben.2011.09.005
  25. Benítez T, Gasent-Ramírez JM, Castrejón F, Codón AC (1996) Development of new strains for the food industry. Biotechnol Prog 12(2):149–163. doi: 10.1021/bp960001o CrossRefGoogle Scholar
  26. Bernardi T, de Melo Pereira G, Cardoso P, Dias E, Schwan R (2008) Saccharomyces cerevisiae strains associated with the production of cachaça: identification and characterization by traditional and molecular methods (PCR, PFGE and mtDNA-RFLP). World J Microbiol Biotechnol 24(11):2705–2712. doi: 10.1007/s11274-008-9799-y CrossRefGoogle Scholar
  27. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. doi: 10.1371/journal.pgen.1001287 CrossRefGoogle Scholar
  28. Brazil (2010) Parecer Técnico no. 2281/2010—Liberação comercial de levedura (Saccharomyces cerevisiae) geneticamente modificada para produção de farneseno, cepa Y1979—processo no. 01200.003590/2009-85. Ministry of Science and Technology. Accessed 26 Sep 2012
  29. Brazil (2012) Acompanhamento da produção sucroalcooleira. Ministry of Agriculture, Livestock and Food Supply. Accessed 26 Sep 2012
  30. Brazilian Sugarcane Industry Association (2012) Frota brasileira de autoveículos leves (ciclo Otto). Accessed 26 Sep 2012
  31. Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira KJ, DeLucia E (2012) Ethanol from sugarcane in Brazil: a ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4(2):119–126. doi: 10.1111/j.1757-1707.2011.01122.x CrossRefGoogle Scholar
  32. Cherubin RA (2003) Efeitos da viabilidade da levedura e da contaminação bacteriana na fermentação alcoólica. Thesis, Universidade de São PauloGoogle Scholar
  33. Codón AC, Benítez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol 49(2):154–163. doi: 10.1007/s002530051152 CrossRefGoogle Scholar
  34. da Silva-Filho EA, de Melo WF, Antunes DF, dos Santos SKB, Resende AD, Simoes DA, de Morais Jr MA (2005a) Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32(10):481–486. doi: 10.1007/s10295-005-0027-6 CrossRefGoogle Scholar
  35. da Silva-Filho EA, dos Santos SKB, Resende ADM, de Morais JOF, de Morais Jr MA, Simoes DA (2005b) Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Anton Leeuw Int J Gen 88(2):13–23. doi: 10.1007/s10482-005-7283-3 CrossRefGoogle Scholar
  36. de Oliva-Neto P, Ferreira MA, Yokoya F (2004) Screening for yeast with antibacterial properties from an ethanol distillery. Bioresour Technol 92(1):1–6. doi: 10.1016/j.biortech.2003.08.005 CrossRefGoogle Scholar
  37. de Souza Liberal AT, Basílio A, do Monte Resende A, Brasileiro B, da Silva-Filho E, de Morais J, Simões D, de Morais M Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102(2):538–547. doi: 10.1111/j.1365-2672.2006.03082.x Google Scholar
  38. de Souza Oliveira R, Rivas Torres B, Zilli M, de Araújo Viana Marques D, Basso LC, Converti A (2009) Use of sugar cane vinasse to mitigate aluminum toxicity to Saccharomyces cerevisiae. Arch Environ Contam Toxicol 57(3):488–494. doi: 10.1007/s00244-009-9287-x CrossRefGoogle Scholar
  39. Denayrolles M, de Villechenon EP, Lonvaud-Funel A, Aigle M (1997) Incidence of SUC-RTM telomeric repeated genes in brewing and wild wine strains of Saccharomyces. Curr Genet 31(6):457–461. doi: 10.1007/s002940050230 CrossRefGoogle Scholar
  40. Dörfler J, Amorim HV (2007) Applied bioethanol technology in Brazil. Sugar Ind/Zuckerindustrie 132(9):691–697Google Scholar
  41. Dorta C, de Oliva-Neto P, de Abreu-Neto MS, Nicolau-Junior N, Nagashima AI (2006) Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22(2):177–182. doi: 10.1007/s11274-005-9016-1 CrossRefGoogle Scholar
  42. Duarte WF, Dragone G, Dias DR, Oliveira JM, Teixeira JA, Silva JBAE, Schwan RF (2010) Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). Int J Food Microbiol 143(3):173–182. doi: 10.1016/j.ijfoodmicro.2010.08.014 CrossRefGoogle Scholar
  43. Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G (2012) Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22(5):908–924. doi: 10.1101/gr.130310.111 CrossRefGoogle Scholar
  44. Duval EH, Alves SL Jr, Dunn B, Sherlock G, Stambuk BU (2010) Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 109(1):248–259. doi: 10.1111/j.1365-2672.2009.04656.x Google Scholar
  45. Elsztein C, de Menezes JAS, de Morais Jr MA (2008) Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process. J Ind Microbiol Biotechnol 35(9):967–973. doi: 10.1007/s10295-008-0371-4 CrossRefGoogle Scholar
  46. Elsztein C, de Lucena RM, de Morais Jr MA (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12. doi: 10.1186/1471-2199-12-38
  47. Garoma T, Ben-Khaled M, Beyene A (2012) Comparative resource analyses for ethanol produced from corn and sugarcane in different climatic zones. Int J Energy Res 36(10):1065–1076. doi: 10.1002/er.1853 CrossRefGoogle Scholar
  48. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31(5):535–569. doi: 10.1111/j.1574-6976.2007.00076.x CrossRefGoogle Scholar
  49. Godoy A, Amorim HV, Lopes ML, Oliveira AJ (2008) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int Sugar J 110(1311):175–181Google Scholar
  50. Goldemberg J (2007) Ethanol for a sustainable energy future. Sci 315(5813):808–810. doi: 10.1126/science.1137013 CrossRefGoogle Scholar
  51. Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6. doi: 10.1186/1754-6834-1-6 CrossRefGoogle Scholar
  52. Goldemberg J, Guardabassi P (2010) The potential for first-generation ethanol production from sugarcane. Biofuels, Bioprod Biorefin 4(1):17–24. doi: 10.1002/bbb.186 CrossRefGoogle Scholar
  53. Gomes FCO, Silva CLC, Marini MM, Oliveira ES, Rosa CA (2007) Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil. J Appl Microbiol 103(6):2438–2447. doi: 10.1111/j.1365-2672.2007.03486.x CrossRefGoogle Scholar
  54. Gomes DG, Guimarães PMR, Pereira FB, Teixeira JA, Domingues L (2012) Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation–sedimentation. Bioresour Technol 108:162–168. doi: 10.1016/j.biortech.2011.12.089 CrossRefGoogle Scholar
  55. Gutierrez LE (1989) Estudo comparativo da fermentação alcoólica por linhagens de Saccharomyces cerevisiae e Saccharomyces uvarum. Universidade de Sao PauloGoogle Scholar
  56. Gutierrez LE (1991) Produção de glicerol por linhagens de Saccharomyces durante fermentação alcoólica. Anais ESALQ 48:55–69Google Scholar
  57. Gutierrez LE (1993) Changes in trehalose content of baker's yeast as affected by octanoic acid. Sci Agric 50:460–463Google Scholar
  58. Gutierrez LE, Orelli VFDM (1991) Efeito do nitrito sobre a fermentação alcoólica realizada por Saccharomyces cerevisiae. Anais ESALQ 48:41–54Google Scholar
  59. Gutierrez LE, Annicchino AVKO, Lucatti L, da Silva SBL (1991a) Aumento da produção de etanol a partir de melaço de cana-de-açúcar pela adição de benzoato. Anais ESALQ 48:1–21Google Scholar
  60. Gutierrez LE, Annicchino AVKO, Lucatti L, Stipp JMS (1991b) Effects of acetic acid on alcoholic fermentation. Arq Biol Tecnol 34(2):235–242Google Scholar
  61. Laluce C (1991) Current aspects of fuel ethanol production in Brazil. Crit Rev Biotechnol 11(2):149–161. doi: 10.3109/07388559109040620 CrossRefGoogle Scholar
  62. Lam E, Shine J, Da Silva J, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho MC, Glynn N, Helsel Z, Ma J, Richard E, Souza GM, Ming RAY (2009) Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy 1(3):251–255. doi: 10.1111/j.1757-1707.2009.01016.x CrossRefGoogle Scholar
  63. Leal MRLV, Walter ADS (2010) Sustainability of the production of ethanol from sugarcane: the Brazilian experience. Int Sugar J 112(1339):7Google Scholar
  64. Leite FCB, Basso TO, Pita WB, Gombert AK, Simões DA, de Morais Jr MA (2012) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res. doi: 10.1111/j.1567-1364.2012.12007.x
  65. Lima UA, Aquarone E, Borzani W (1975) Biotecnologia—Tecnologia das Fermentações. Edgard Blücher, São PauloGoogle Scholar
  66. Lima UA, Basso LC, Amorim HV (2001) Produção de etanol. In: Lima UA, Aquarone E, Borzani W, Schmidell W (eds) Biotecnologia industrial: processos fermentativos e enzimáticos. vol 3. Edgard Blücher, São Paulo, pp 1–43Google Scholar
  67. Lopes ML, Basso LC, Amorim HV (2002) Chromosomal polymorphism in Saccharomyces cerevisiae (strain PE-2) used in the industrial fermentation for ethanol production. Paper presented at the 2002 Yeast Genetics and Molecular Biology Meeting, Madison, 2002Google Scholar
  68. Lucena BTL, da Silva-Filho EA, Coimbra MRM, Morais JOF, Simões DA, de Morais Jr MA (2007) Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet Mol Res 6(4):1072–1084Google Scholar
  69. Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32(7):582–595. doi: 10.1016/j.biombioe.2007.12.006 CrossRefGoogle Scholar
  70. Mariano-da-Silva S, Basso LC (2004) Efeitos do cádmio sobre o crescimento das leveduras Saccharomyces cerevisiae PE-2 e Saccharomyces cerevisiae IZ-1904, e a capacidade da vinhaça em atenuar a toxicidade. Ciênc Tecnol Aliment 24:16–22CrossRefGoogle Scholar
  71. Marini M, Gomes F, Silva C, Cadete R, Badotti F, Oliveira E, Cardoso C, Rosa C (2009) The use of selected starter Saccharomyces cerevisiae strains to produce traditional and industrial cachaça: a comparative study. World J Microbiol Biotechnol 25(2):235–242. doi: 10.1007/s11274-008-9884-2 CrossRefGoogle Scholar
  72. Miranda M Jr, Batistote M, Cilli EM, Ernandes JR (2009) Sucrose fermentation by Brazilian ethanol production yeasts in media containing structurally complex nitrogen sources. J Inst Brew 115(3):191–197. doi: 10.1002/j.2050-0416.2009.tb00368.x CrossRefGoogle Scholar
  73. Nepomuceno N, Fernandes EAN, Bacchi MA (1997) Dynamics of chemical elements in the fermentation process of ethanol production. J Radioanal Nucl Chem 216(2):289–292CrossRefGoogle Scholar
  74. Ness F, Aigle M (1995) RTM1: a member of a new family of telomeric repeated genes in yeast. Genet 140(3):945–956Google Scholar
  75. Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J-L, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Nat Acad Sci 106(38):16333–16338. doi: 10.1073/pnas.0904673106 CrossRefGoogle Scholar
  76. Paulillo SCL, Yokoya F, Basso LC (2003) Mobilization of endogenous glycogen and trehalose of industrial yeasts. Braz J Microbiol 34:249–254CrossRefGoogle Scholar
  77. Pavlak MCM, Abreu-Lima TL, Carreiro SC, Paulillo SCL (2011) Estudo da fermentação do hidrolisado de batata-doce utilizando diferentes linhagens de Saccharomyces cerevisiae. Quím Nova 34:82–86CrossRefGoogle Scholar
  78. Pereira GAG, Cunha AF (2000) PI0001122-3—processo de fermentação com uso de microorganismos floculantes condicionais. National Institute for Industrial Property of Brazil. Accessed 26 Nov 2012
  79. Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2010a) Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol 101(20):7856–7863. doi: 10.1016/j.biortech.2010.04.082 CrossRefGoogle Scholar
  80. Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2010b) Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 32(11):1655–1661. doi: 10.1007/s10529-010-0330-9 CrossRefGoogle Scholar
  81. Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2011) Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J Biosci Bioeng 112(2):130–136. doi: 10.1016/j.jbiosc.2011.03.022 CrossRefGoogle Scholar
  82. Pereira FB, Gomes DG, Guimarães PMR, Teixeira JA, Domingues L (2012) Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnol Lett 34(1):45–53. doi: 10.1007/s10529-011-0735-0 CrossRefGoogle Scholar
  83. Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are negative. Nat Resour Res 12(2):127–134. doi: 10.1023/a:1024214812527 CrossRefGoogle Scholar
  84. Querol A, Bond U (2009) The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293(1):1–10. doi: 10.1111/j.1574-6968.2008.01480.x CrossRefGoogle Scholar
  85. Reis V, Nicola A, de Souza Oliveira Neto O, Batista V, de Moraes L, Torres F (2012) Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol 1-11. doi: 10.1007/s10295-012-1170-5
  86. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295. doi: 10.1016/j.biortech.2007.11.013 CrossRefGoogle Scholar
  87. Shapouri H, Gallagher PW, Nefstead W, Schwartz R, Noe S, Conway R (2008) 2008 Energy balance for the corn-ethanol industry. United States Department of Agriculture. Accessed 26 Sep 2012
  88. Silva FC, Boaretto AE, Abreu-Jr CH, Berton RS, Basso LC, Barbieri V (2010) Impactos da aplicação de lodo de esgoto na cultura da cana-de-açúcar e no ambiente. Holos Environ 10(1):62–82Google Scholar
  89. Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Silva Bon EP, Moraes LMP, Araújo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101(13):4820–4825. doi: 10.1016/j.biortech.2009.11.067 CrossRefGoogle Scholar
  90. Souza EL, Macedo IC (2010) Etanol e bioeletricidade: a cana-de-açúcar no futuro da matriz energética. Brazilian Sugarcane Industry Association. Accessed 26 Sep 2012
  91. Stambuk BU, Eleutherio ECA, Florez-Pardo LM, Souto-Maior AM, Bon EPS (2008) Brazilian potential for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains. J Sci Ind Res 67:918–926Google Scholar
  92. Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19(12):2271–2278. doi: 10.1101/gr.094276.109 CrossRefGoogle Scholar
  93. Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22(5):975–984. doi: 10.1101/gr.131698.111 CrossRefGoogle Scholar
  94. Vezinhet F, Blondin B, Hallet J-N (1990) Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32(5):568–571. doi: 10.1007/bf00173729 CrossRefGoogle Scholar
  95. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotech J 8(3):263–276. doi: 10.1111/j.1467-7652.2009.00491.x CrossRefGoogle Scholar
  96. Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487. doi: 10.1016/S0167-7799(99)01384-0 CrossRefGoogle Scholar
  97. Zanin G, Santana C, Bon E, Giordano R, de Moraes F, Andrietta S, Neto C, Macedo I, Lahr FD, Ramos L, Fontana J (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86(1):1147–1161. doi: 10.1385/abab:84-86:1-9:1147 CrossRefGoogle Scholar
  98. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30. doi: 10.1016/j.jbiotec.2009.05.00 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bianca Eli Della-Bianca
    • 1
  • Thiago Olitta Basso
    • 1
    • 4
  • Boris Ugarte Stambuk
    • 2
  • Luiz Carlos Basso
    • 3
  • Andreas Karoly Gombert
    • 1
  1. 1.Department of Chemical EngineeringUniversity of São PauloSão PauloBrazil
  2. 2.Departamento de BioquímicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Department of Biological SciencesUniversity of São PauloPiracicabaBrazil
  4. 4.Novozymes Latin America Ltda.AraucáriaBrazil

Personalised recommendations