Applied Microbiology and Biotechnology

, Volume 97, Issue 20, pp 9257–9262 | Cite as

Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces

  • Jafar Hasan
  • Hayden K. Webb
  • Vi Khanh Truong
  • Sergey Pogodin
  • Vladimir A. Baulin
  • Gregory S. Watson
  • Jolanta A. Watson
  • Russell J. Crawford
  • Elena P. Ivanova
Environmental biotechnology

Abstract

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 106P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.

Keywords

Self-cleaning Nanopattern Bactericidal Insect wings Antibiofouling 

References

  1. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108CrossRefGoogle Scholar
  2. Choi CH, Kim CJ (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17:5326–5333CrossRefGoogle Scholar
  3. Díaz C, Schilardi PL, Salvarezza RC, De Mele MFL (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23:11206–11210PubMedCrossRefGoogle Scholar
  4. Díaz C, Schilardi PL, dos Santos Claro PC, Salvarezza RC, Fernández Lorenzo de Mele MA (2009) Submicron trenches reduce the Pseudomonas fluorescens colonization rate on solid surfaces. ACS Appl Mater Interfaces 1:136–143PubMedCrossRefGoogle Scholar
  5. Díaz C, Salvarezza RC, Fernández Lorenzo De Mele MA, Schilardi PL (2010) Organization of Pseudomonas fluorescens on chemically different nano/microstructured surfaces. ACS Appl Mater Interfaces 2:2530–2539PubMedCrossRefGoogle Scholar
  6. Díaz C, Fernández Lorenzo De Mele MA, Schilardi PL (2011) Comment on “the interaction of cells and bacteria with surfaces structured at the nanometre scale”. Acta Biomater 7:1934–1935PubMedCrossRefGoogle Scholar
  7. Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J (2012) Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc Natl Acad Sci USA 109:13182–13187PubMedCrossRefGoogle Scholar
  8. Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019CrossRefGoogle Scholar
  9. Food and Drug Administration (FDA) (2009) Microbiological challenge testing, evaluation and definition of potentially hazardous foods. Accessed 25 Oct 2012.Google Scholar
  10. Food and Drug Administration (FDA), Center for Food Safety and Applied Nutrition (2001) The “Bad Bug Book” [Foodborne pathogenic microorganisms and natural toxins handbook]. http://www.cfsan.fda.gov/~mow/intro.html. Accessed 10 Dec 2001.
  11. Green DW, Watson GS, Watson J, Abraham SJK (2012) New biomimetic directions in regenerative ophthalmology. Adv Healthcare Mater 1:140–148CrossRefGoogle Scholar
  12. Guo Z, Liu W, Su B-L (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interf Sci 353:335–355CrossRefGoogle Scholar
  13. Harbarth S, Cosgrove S, Carmeli Y (2002) Effects of antibiotics on nosocomial epidemiology of vancomycin-resistant enterococci. Antimicrob Agents Chemother 46:1619–1628PubMedCrossRefGoogle Scholar
  14. Harris AD, Furuno JP, Roghmann M-C, Johnson JK, Conway LJ, Venezia RA, Standiford HC, Schweizer ML, Hebden JN, Moore AC, Perencevich EN (2010) Targeted surveillance of Methicillin-resistant Staphylococcus aureus and its potential use to guide empiric antibiotic therapy. Antimicrob Agents Chemother 54:3143–3148PubMedCrossRefGoogle Scholar
  15. Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotech 30:868–875CrossRefGoogle Scholar
  16. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa by cicada wings. Small 8:2489–2494PubMedCrossRefGoogle Scholar
  17. Kietzig AM, Hatzikiriakos SG, Englezos P (2009) Patterned superhydrophobic metallic surfaces. Langmuir 25:4821–4827PubMedCrossRefGoogle Scholar
  18. Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963CrossRefGoogle Scholar
  19. Kostovski G, Chinnasamy U, Jayawardhana S, Stoddart PR, Mitchell A (2010) Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv Mater 23:531–535PubMedCrossRefGoogle Scholar
  20. Lim H, Jund DH, Noh JH, Choi GR, Kim WD (2009) Simple nanofabrication of a superhydrophobic and transparent biomimetic surface. Chin Sci Bull 54:3613–3616CrossRefGoogle Scholar
  21. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20:3517–3519PubMedCrossRefGoogle Scholar
  22. Mischensko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707CrossRefGoogle Scholar
  23. Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP (2009) Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol 58:268–273PubMedCrossRefGoogle Scholar
  24. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484PubMedCrossRefGoogle Scholar
  25. Postgate JR (1969) Viable counts and viability. Methods Microbiol 1:611–628Google Scholar
  26. Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A (1999) The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis 5:9–17PubMedCrossRefGoogle Scholar
  27. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver coated medical devices. J Hosp Infect 40:257–262PubMedCrossRefGoogle Scholar
  28. Shamis Y, Patel S, Taube A, Morsi Y, Sbarski I, Shramkov Y, Croft RJ, Crawford RJ, Ivanova EP (2009) A new sterilization technique of bovine pericardial biomaterial using microwave radiation. Tissue Eng Part C Methods 15:445–454PubMedCrossRefGoogle Scholar
  29. Shao W, Zhao Q (2010) Influence of reducers on nanostructure and surface energy of silver coatings and bacterial adhesion. Surf Coat Technol 204:1288–1294CrossRefGoogle Scholar
  30. Stamm LV (2010) Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob Agents Chemother 54:583–589PubMedCrossRefGoogle Scholar
  31. Su Y, Ji B, Huang Y, Hwang K-C (2010) Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir 26:18926–18937PubMedCrossRefGoogle Scholar
  32. Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985PubMedCrossRefGoogle Scholar
  33. Truong VK, Rundell S, Lapovok R, Estrin Y, Wang JY, Berndt CC, Barnes DG, Fluke CJ, Crawford RJ, Ivanova EP (2009) Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biot 83:925–937CrossRefGoogle Scholar
  34. Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP (2010) The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31:3674–3683PubMedCrossRefGoogle Scholar
  35. Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP (2011) Nature inspired structured surfaces for biomedical applications. Curr Med Chem 18:3367–3375PubMedCrossRefGoogle Scholar
  36. Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2:1440–1443PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jafar Hasan
    • 1
  • Hayden K. Webb
    • 1
  • Vi Khanh Truong
    • 1
  • Sergey Pogodin
    • 2
  • Vladimir A. Baulin
    • 2
    • 3
  • Gregory S. Watson
    • 4
  • Jolanta A. Watson
    • 4
  • Russell J. Crawford
    • 1
  • Elena P. Ivanova
    • 1
  1. 1.Faculty Life and Social SciencesSwinburne University of TechnologyHawthornAustralia
  2. 2.Departament d’Enginyeria QuimicaUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.ICREABarcelonaSpain
  4. 4.School of Marine and Biological SciencesJames Cook UniversityTownsvilleAustralia

Personalised recommendations