Applied Microbiology and Biotechnology

, Volume 97, Issue 4, pp 1735–1743 | Cite as

Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains

  • Juan Daniel Rivaldi
  • Marta Luís C. Sousa Silva
  • Luis C. Duarte
  • António E. N. Ferreira
  • Carlos Cordeiro
  • Maria das Graças de Almeida Felipe
  • Ana de Ponces Freire
  • Ismael Maciel de Mancilha
Applied microbial and cell physiology

Abstract

Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g L−1 for L. acidophilus, with a cell mass yield (YX/S) of 0.37 g g−1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g L−1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (Km) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U mg protein−1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (Km for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway.

Keywords

Biodiesel-derived glycerol Glycerol kinase Glycerol dehydrogenase Lactobacillus Enzyme kinetics Biomass production 

References

  1. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102(11):3906–3912CrossRefGoogle Scholar
  2. Alvarez MD, Medina R, Pasteris SE, de Saad AMS, Sesma F (2004) Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: Cloning and expression of two glycerol kinase genes. J Mol Microb Biotech 7(4):170–181CrossRefGoogle Scholar
  3. Aragon CC, Ferreira-Dias S, Gattas EAD, Peres MDS (2008) Characterization of glycerol kinase from baker's yeast: response surface modeling of the enzymatic reaction. J Mol Catal B-Enzym 52–3:113–120CrossRefGoogle Scholar
  4. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright A, Ouwehand A (eds) Lactic acid bacteria—microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 1–66Google Scholar
  5. Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brussow H (2007) Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189(4):1311–1321CrossRefGoogle Scholar
  6. Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D (2001) Glycerol: a neglected variable in metabolic processes? Bioessays 23(6):534–542CrossRefGoogle Scholar
  7. Consortium U (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40(D1):D71–D75CrossRefGoogle Scholar
  8. De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147(Pt 7):1863–1873Google Scholar
  9. Hayashi SI, Lin EC (1967) Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem 242(5):1030–1035Google Scholar
  10. Holmberg C, Beijer L, Rutberg B, Rutberg L (1990) Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol 136(12):2367–2375Google Scholar
  11. Holmberg C, Rutberg B (1989) Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol Lett 49(2–3):151–155CrossRefGoogle Scholar
  12. Huang HS, Yoshida T, Meng Y, Kabashima T, Ito K, Nishiya Y, Kawamura Y, Yoshimoto T (1997) Purification and characterization of thermostable glycerol kinase from Thermus flavus. J Ferment Bioeng 83(4):328–332CrossRefGoogle Scholar
  13. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  14. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995CrossRefGoogle Scholar
  15. Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol-Uk 145:2577–2585Google Scholar
  16. Liepins J, Kuorelahti S, Penttila M, Richard P (2006) Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina. FEBS J 273(18):4229–4235CrossRefGoogle Scholar
  17. Lin EC, Magasanik B (1960) The activation of glycerol dehydrogenase from Aerobacter aerogenes by monovalent cations. J Biol Chem 235:1820–1823Google Scholar
  18. Lorca GL, de Valdez GF (2001) A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639. Curr Microbiol 42(1):21–25CrossRefGoogle Scholar
  19. Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186(12):3749–3759CrossRefGoogle Scholar
  20. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the Mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic-stress. EMBO J 14(7):1360–1371Google Scholar
  21. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616. doi:10.1073/pnas.0607117103 CrossRefGoogle Scholar
  22. Myint LL, El-Halwagi MM (2009) Process analysis and optimization of biodiesel production from soybean oil. Clean Technol Envir 11(3):263–276. doi:10.1007/s10098-008-0156-5 CrossRefGoogle Scholar
  23. Nikel PI, Giordano AM, de Almeida A, Godoy MS, Pettinari MJ (2010) Elimination of D-lactate synthesis increases poly(3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microb 76(22):7400–7406CrossRefGoogle Scholar
  24. OECD-FAO (2011) Biofuels. In: OECD-FAO (ed) OECD-FAO agricultural outlook 2011–2020. vol chapter 3. OECD, Rome, pp 76–92Google Scholar
  25. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32(1):60–71CrossRefGoogle Scholar
  26. Parvez S, Malik KA, Kang SA, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185CrossRefGoogle Scholar
  27. Pasteris SE, de Saad AMS (2009) Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine. J Agr Food Chem 57(9):3853–3858CrossRefGoogle Scholar
  28. Pettigrew DW, Ma DP, Conrad CA, Johnson JR (1988) Escherichia coli glycerol kinase. Cloning and sequencing of the Glpk gene and the primary structure of the enzyme. J Biol Chem 263(1):135–139Google Scholar
  29. Pettigrew DW, Yu GJ, Liu YG (1990) Nucleotide regulation of Escherichia coli glycerol kinase: initial-velocity and substrate binding studies. Biochemistry 29(37):8620–8627CrossRefGoogle Scholar
  30. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23(2):195–200CrossRefGoogle Scholar
  31. Richter N, Neumann M, Liese A, Wohlgemuth R, Eggert T, Hummel W (2009) Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde. ChemBioChem 10(11):1888–1896CrossRefGoogle Scholar
  32. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microb 74(20):6216–6222CrossRefGoogle Scholar
  33. Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 39(1):178–187CrossRefGoogle Scholar
  34. Veiga da Cunha MV, Foster MA (1992) Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J Bacteriol 174(3):1013–1019Google Scholar
  35. Voegele RT, Sweet GD, Boos W (1993) Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol 175(4):1087–1094Google Scholar
  36. Weber AL (1987) The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Orig Life Evol B 17(2):107–119CrossRefGoogle Scholar
  37. Wei S, Song Q, Wei D (2007) Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol 37(2):113–121CrossRefGoogle Scholar
  38. Yamada H, Nagao A, Nishise H, Tani Y (1982) Studies on microbial glycerol dehydrogenase. 1. Formation of glycerol dehydrogenase by microorganisms. Agr Biol Chem Tokyo 46(9):2325–2331CrossRefGoogle Scholar
  39. Yamada K, Tani Y (1988) Glycerol dehydrogenase and dihydroxyacetone reductase of a methylotrophic yeast, Hansenula ofunaensis. Agr Biol Chem Tokyo 52(3):711–719CrossRefGoogle Scholar
  40. Yamada-Onodera K, Yamamoto H, Emoto E, Kawahara N, Tani Y (2002) Characterisation of glycerol dehydrogenase from a methylotrophic yeast, Hansenula polymorpha Dl-1, and its gene cloning. Acta Biotechnol 22:337–353CrossRefGoogle Scholar
  41. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 18(3):213–219CrossRefGoogle Scholar
  42. Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Daniel Rivaldi
    • 1
    • 2
  • Marta Luís C. Sousa Silva
    • 3
  • Luis C. Duarte
    • 4
  • António E. N. Ferreira
    • 3
  • Carlos Cordeiro
    • 3
  • Maria das Graças de Almeida Felipe
    • 1
  • Ana de Ponces Freire
    • 3
  • Ismael Maciel de Mancilha
    • 1
    • 5
  1. 1.Universidade de São Paulo, Escola de Engenharia de LorenaLorenaBrazil
  2. 2.Universidad Nacional de Asunción, Facultad de Ciencias QuímicasSan LorenzoParaguay
  3. 3.Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de LisboaLisboaPortugal
  4. 4.Unidade de Bioenergia, LNEG—Laboratório Nacional de Energia e GeologiaLisboaPortugal
  5. 5.Universidade Federal de Viçosa, Departamento de Tecnologia de AlimentosViçosaBrazil

Personalised recommendations