Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 3, pp 939–955 | Cite as

Environmental responses and the control of iron homeostasis in fungal systems

  • Paulo Canessa
  • Luis F. Larrondo
Mini-Review

Abstract

Organisms need to actively respond to changes in the environment and, particularly under diverse conditions, they ought to ensure access to nutrients. Among micronutrients, iron is a key component of several enzymes and participates in a variety of cellular processes. Iron deprivation therefore poses a serious challenge to both unicellular and multicellular individuals. Nevertheless, excess of this metal is toxic, compromising cell function and viability. Thus, it is not surprising that organisms have evolved sophisticated mechanisms to tightly regulate cellular iron levels. In the last decade, major advances have been achieved in the molecular understanding of how fungi respond to changing iron concentrations. Moreover, this metal has been recognized as an important element impacting pathogenic and saprophytic fungal lifestyles. An interconnected transcriptional negative feedback loop has been described as central in the regulation of genes encoding for iron uptake and utilization components in fungi. The observation that light, oxygen, or nutrients can also impact the expression of some of these elements suggests that additional environmental inputs—besides iron levels—may as well modulate the machinery underpinning iron homeostasis. This review highlights some of the latest findings associated with iron-regulated processes in fungi and revisits the increasing transcriptional complexity involved in the control of this metal homeostasis. In addition, we present the first in silico evidence of genes encoding for putative ferritins in zygomycetes and chytrids, as well as other ferritin-like sequences widespread among fungi, which raises interesting questions relative to iron storage in this particular group of organisms.

Keywords

Iron Fenton reaction Light Ferritin Ferroxidases 

Notes

Acknowledgments

Work in our laboratory is supported by grants TWAS 08–053, CRP-ICGEB CHI09-02, IFS C/4693-1, and CONICYT/FONDECYT/regular/N°1090513 to L.F.L. and CONICYT/FONDECYT/postdoc/N°3110127 to P.C. We deeply apologize for any omissions and to all the authors whose primary and relevant work could not be cited because of space constraints.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9(7):1000–1012. doi: 10.1111/j.1567-1364.2009.00570.x CrossRefGoogle Scholar
  2. Arantes V, Milagres AMF (2006) Evaluation of different carbon sources for production of iron-reducing compounds by Wolfiporia cocos and Perenniporia medulla-panis. Process Biochem 41:887–891CrossRefGoogle Scholar
  3. Arantes V, Milagres AM (2007) Identification of iron-regulated cellular proteins, Fe3+-reducing and -chelating compounds, in the white-rot fungus Perenniporia medulla-panis. Can J Microbiol 53(12):1323–1329. doi: 10.1139/W07-102 CrossRefGoogle Scholar
  4. Arantes V, Milagres AM (2008) Response of Wolfiporia cocos to iron availability: alterations in growth, expression of cellular proteins, Fe3+-reducing activity and Fe3+-chelators production. J Appl Microbiol 104(1):185–193Google Scholar
  5. Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94(2):323–338. doi: 10.1007/s00253-012-3954-y CrossRefGoogle Scholar
  6. Askwith C, Kaplan J (1997) An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem 272(1):401–405CrossRefGoogle Scholar
  7. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76(2):403–410CrossRefGoogle Scholar
  8. Baek YU, Li M, Davis DA (2008) Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell 7(7):1168–1179. doi: 10.1128/EC.00108-08 CrossRefGoogle Scholar
  9. Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, Mazurie A, Grahl N, Haas H, Cramer RA (2011a) SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 7(12):e1002374. doi: 10.1371/journal.pgen.1002374 CrossRefGoogle Scholar
  10. Blatzer M, Binder U, Haas H (2011b) The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol 48(11):1027–1033. doi: 10.1016/j.fgb.2011.07.009 CrossRefGoogle Scholar
  11. Bonaccorsi di Patti MC, Bellenchi GC, Bielli P, Calabrese L (1999) Release of highly active Fet3 from membranes of the yeast Pichia pastoris by limited proteolysis. Arch Biochem Biophys 372(2):295–299. doi: 10.1006/abbi.1999.1493 CrossRefGoogle Scholar
  12. Bonaccorsi di Patti MC, Felice MR, Camuti AP, Lania A, Musci G (2000) The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3. FEBS Lett 472(2–3):283–286CrossRefGoogle Scholar
  13. Bonaccorsi di Patti MC, Paronetto MP, Dolci V, Felice MR, Lania A, Musci G (2001) Mutational analysis of the iron binding site of Saccharomyces cerevisiae ferroxidase Fet3. An in vivo study. FEBS Lett 508(3):475–478CrossRefGoogle Scholar
  14. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12. doi: 10.1186/1745-6150-7-12 CrossRefGoogle Scholar
  15. Bozarth RF, Goenaga A (1972) Purification and properties of mycoferritin from Mortierella alpina. Can J Microbiol 18(5):619–622CrossRefGoogle Scholar
  16. Canessa P, Alvarez JM, Polanco R, Bull P, Vicuna R (2008) The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology 154(Pt 2):491–499. doi: 10.1099/mic.0.2007/013128-0 CrossRefGoogle Scholar
  17. Canessa P, Munoz-Guzman F, Vicuna R, Larrondo LF (2012) Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 49(8):626–634. doi: 10.1016/j.fgb.2012.05.013 CrossRefGoogle Scholar
  18. Carrano CJ, Bohnke R, Matzanke BF (1996) Fungal ferritins: the ferritin from mycelia of Absidia spinosa is a bacterioferritin. FEBS Lett 390(3):261–264CrossRefGoogle Scholar
  19. Castells-Roca L, Muhlenhoff U, Lill R, Herrero E, Belli G (2011) The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol Microbiol 81(1):232–248. doi: 10.1111/j.1365-2958.2011.07689.x CrossRefGoogle Scholar
  20. Chang YC, Bien CM, Lee H, Espenshade PJ, Kwon-Chung KJ (2007) Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol 64(3):614–629. doi: 10.1111/j.1365-2958.2007.05676.x CrossRefGoogle Scholar
  21. Chao LY, Marletta MA, Rine J (2008) Sre1, an iron-modulated GATA DNA-binding protein of iron-uptake genes in the fungal pathogen Histoplasma capsulatum. Biochemistry 47(27):7274–7283. doi: 10.1021/bi800066s CrossRefGoogle Scholar
  22. Chen C, Pande K, French SD, Tuch BB, Noble SM (2011) An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10(2):118–135. doi: 10.1016/j.chom.2011.07.005 CrossRefGoogle Scholar
  23. Corrochano LM (2011) Fungal photobiology: a synopsis. IMA Fungus 2(1):25–28. doi: 10.5598/imafungus.2011.02.01.04 CrossRefGoogle Scholar
  24. Courel M, Lallet S, Camadro JM, Blaiseau PL (2005) Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 25(15):6760–6771. doi: 10.1128/MCB.25.15.6760-6771.2005 CrossRefGoogle Scholar
  25. David CN, Easterbrook K (1971) Ferritin in the fungus Phycomyces. J Cell Biol 48(1):15–28CrossRefGoogle Scholar
  26. De Luca NG, Wood PM (2000) Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol 43:39–74CrossRefGoogle Scholar
  27. Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17(2):192–196. doi: 10.1038/6198 CrossRefGoogle Scholar
  28. Dias MA, Lacerda IC, Pimentel PF, de Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34(1):46–50CrossRefGoogle Scholar
  29. Eck R, Hundt S, Hartl A, Roemer E, Kunkel W (1999) A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145(Pt 9):2415–2422Google Scholar
  30. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Muller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18(11):3332–3345. doi: 10.1105/tpc.106.043588 CrossRefGoogle Scholar
  31. Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot Cell 3(2):561–563CrossRefGoogle Scholar
  32. Fekete FA, Chandhoke V, Jellison J (1989) Iron-binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol 55(10):2720–2722Google Scholar
  33. Fernandez-Fueyo E, Ruiz-Duenas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavin JL, Oguiza JA, Perez G, Pisabarro AG, Ramirez L, Santoyo F, Master E, Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kues U, Hori C, Igarashi K, Samejima M, Held BW, Barry KW, LaButti KM, Lapidus A, Lindquist EA, Lucas SM, Riley R, Salamov AA, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries RP, Wiebenga A, Stenlid J, Eastwood D, Grigoriev IV, Berka RM, Blanchette RA, Kersten P, Martinez AT, Vicuna R, Cullen D (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 109(14):5458–5463. doi: 10.1073/pnas.1119912109 CrossRefGoogle Scholar
  34. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kues U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719. doi: 10.1126/science.1221748 CrossRefGoogle Scholar
  35. Fragiadakis GS, Tzamarias D, Alexandraki D (2004) Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23(2):333–342. doi: 10.1038/sj.emboj.7600043 CrossRefGoogle Scholar
  36. Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S (2011) Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 91(3):447–460. doi: 10.1007/s00253-011-3391-3 CrossRefGoogle Scholar
  37. Gauthier GM, Sullivan TD, Gallardo SS, Brandhorst TT, Vanden Wymelenberg AJ, Cuomo CA, Suen G, Currie CR, Klein BS (2010) SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLoS Pathog 6(4):e1000846. doi: 10.1371/journal.ppat.1000846 CrossRefGoogle Scholar
  38. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53(2‚Äì3):133–162CrossRefGoogle Scholar
  39. Grissa I, Bidard F, Grognet P, Grossetete S, Silar P (2010) The Nox/ferric reductase/ferric reductase-like families of Eumycetes. Fungal Biol 114(9):766–777. doi: 10.1016/j.funbio.2010.07.002 CrossRefGoogle Scholar
  40. Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62(4):316–330. doi: 10.1007/s00253-003-1335-2 CrossRefGoogle Scholar
  41. Haas H (2012) Iron—a key nexus in the virulence of Aspergillus fumigatus. Front Microbiol 3:28. doi: 10.3389/fmicb.2012.00028 Google Scholar
  42. Haas H, Angermayr K, Stoffler G (1997) Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184(1):33–37CrossRefGoogle Scholar
  43. Haas H, Zadra I, Stoffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274(8):4613–4619CrossRefGoogle Scholar
  44. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187. doi: 10.1146/annurev.phyto.45.062806.094338 CrossRefGoogle Scholar
  45. Hagag S, Kubitschek-Barreira P, Neves GW, Amar D, Nierman W, Shalit I, Shamir R, Lopes-Bezerra L, Osherov N (2012) Transcriptional and proteomic analysis of the Aspergillus fumigatus DeltaprtT protease-deficient mutant. PLoS One 7(4):e33604. doi: 10.1371/journal.pone.0033604 CrossRefGoogle Scholar
  46. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14Google Scholar
  47. Hamza A, Baetz K (2012) Iron-responsive transcription factor Aft1 interacts with kinetochore protein Iml3 and promotes pericentromeric cohesin. J Biol Chem 287(6):4139–4147. doi: 10.1074/jbc.M111.319319 CrossRefGoogle Scholar
  48. Harrison KA, Marzluf GA (2002) Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41(51):15288–15295CrossRefGoogle Scholar
  49. Haurie V, Boucherie H, Sagliocco F (2003) The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 278(46):45391–45396. doi: 10.1074/jbc.M307447200 CrossRefGoogle Scholar
  50. Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan, and synthetic lignin. Appl Microbiol Biotechnol 42:790–796CrossRefGoogle Scholar
  51. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273(10):2308–2326. doi: 10.1111/j.1742-4658.2006.05247.x CrossRefGoogle Scholar
  52. Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol Plant Pathol 8(2):163–172. doi: 10.1111/j.1364-3703.2007.00380.x CrossRefGoogle Scholar
  53. Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H (2009) Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 46(4):321–332. doi: 10.1016/j.fgb.2008.12.004 CrossRefGoogle Scholar
  54. Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thon M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H (2007) Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J 26(13):3157–3168. doi: 10.1038/sj.emboj.7601752 CrossRefGoogle Scholar
  55. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12(3):394–404Google Scholar
  56. Hsu PC, Yang CY, Lan CY (2011) Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell 10(2):207–225. doi: 10.1128/EC.00158-10 CrossRefGoogle Scholar
  57. Hwang LH, Seth E, Gilmore SA, Sil A (2012) SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. Eukaryot Cell 11(1):16–25. doi: 10.1128/EC.05274-11 CrossRefGoogle Scholar
  58. Idnurm A, Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology 156(Pt 8):2393–2407. doi: 10.1099/mic.0.039222-0 CrossRefGoogle Scholar
  59. Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47(11):881–892. doi: 10.1016/j.fgb.2010.04.009 CrossRefGoogle Scholar
  60. Jbel M, Mercier A, Pelletier B, Beaudoin J, Labbe S (2009) Iron activates in vivo DNA binding of Schizosaccharomyces pombe transcription factor Fep1 through its amino-terminal region. Eukaryot Cell 8(4):649–664. doi: 10.1128/EC.00001-09 CrossRefGoogle Scholar
  61. Jeeves RE, Mason RP, Woodacre A, Cashmore AM (2011) Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans. Yeast 28(9):629–644. doi: 10.1002/yea.1892 CrossRefGoogle Scholar
  62. Jung WH, Kronstad JW (2008) Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 10(2):277–284. doi: 10.1111/j.1462-5822.2007.01077.x CrossRefGoogle Scholar
  63. Jung WH, Kronstad JW (2011) Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans. FEBS Lett 585(20):3342–3347. doi: 10.1016/j.febslet.2011.09.025 CrossRefGoogle Scholar
  64. Jung WH, Sham A, White R, Kronstad JW (2006) Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol 4(12):e410. doi: 10.1371/journal.pbio.0040410 CrossRefGoogle Scholar
  65. Jung WH, Hu G, Kuo W, Kronstad JW (2009) Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell 8(10):1511–1520. doi: 10.1128/EC.00166-09 CrossRefGoogle Scholar
  66. Jung WH, Saikia S, Hu G, Wang J, Fung CK, D'Souza C, White R, Kronstad JW (2010) HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog 6(11):e1001209. doi: 10.1371/journal.ppat.1001209 CrossRefGoogle Scholar
  67. Kieu NP, Aznar A, Segond D, Rigault M, Simond-Cote E, Kunz C, Soulie MC, Expert D, Dellagi A (2012) Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol. doi: 10.1111/j.1364-3703.2012.00790.x
  68. Kim HJ, Kim HM, Kim JH, Ryu KS, Park SM, Jahng KY, Yang MS, Kim DH (2003) Expression of heteropolymeric ferritin improves iron storage in Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):1999–2005CrossRefGoogle Scholar
  69. Kim KS, Chang YJ, Chung YJ, Park CU, Seo HY (2007) Enhanced expression of high-affinity iron transporters via H-ferritin production in yeast. J Biochem Mol Biol 40(1):82–87CrossRefGoogle Scholar
  70. Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A (2002) Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148(Pt 1):29–40Google Scholar
  71. Knight SA, Vilaire G, Lesuisse E, Dancis A (2005) Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73(9):5482–5492. doi: 10.1128/IAI.73.9.5482-5492.2005 CrossRefGoogle Scholar
  72. Kosman DJ (2010) Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem 285(35):26729–26735. doi: 10.1074/jbc.R110.113217 CrossRefGoogle Scholar
  73. Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205(1):133–138CrossRefGoogle Scholar
  74. Kues U, Ruhl M (2011) Multiple multi-copper oxidase gene families in basidiomycetes—what for? Curr Genomics 12(2):72–94. doi: 10.2174/138920211795564377 CrossRefGoogle Scholar
  75. Kwok EY, Severance S, Kosman DJ (2006) Evidence for iron channeling in the Fet3p–Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45(20):6317–6327. doi: 10.1021/bi052173c CrossRefGoogle Scholar
  76. Lahoz E, Pisacane A, Iannaccone M, Palumbo D, Capparelli R (2008) Fungistatic activity of iron-free bovin lactoferrin against several fungal plant pathogens and antagonists. Nat Prod Res 22(11):955–961. doi: 10.1080/14786410701650253 CrossRefGoogle Scholar
  77. Larrondo LF, Salas L, Melo F, Vicuna R, Cullen D (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol 69(10):6257–6263CrossRefGoogle Scholar
  78. Larrondo LF, Gonzalez B, Cullen D, Vicuna R (2004) Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150(Pt 8):2775–2783. doi: 10.1099/mic.0.27072-0 CrossRefGoogle Scholar
  79. Larrondo L, Vicuña R, Cullen D (2005) Phanerochaete chrysosporium genomics. In: Arora DK, Berka R (eds) Applied mycology and biotechnology, vol 5, Genes and genomics. Elsevier, Amsterdam, pp 315–352Google Scholar
  80. Larrondo LF, Canessa P, Melo F, Polanco R, Vicuna R (2007) Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete chrysosporium. Microbiology 153(Pt 6):1772–1780. doi: 10.1099/mic.0.2006/003442-0 CrossRefGoogle Scholar
  81. Lecha M, Puy H, Deybach JC (2009) Erythropoietic protoporphyria. Orphanet J Rare Dis 4:19. doi: 10.1186/1750-1172-4-19 CrossRefGoogle Scholar
  82. Li L, Chen OS, McVey Ward D, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276(31):29515–29519. doi: 10.1074/jbc.M103944200 CrossRefGoogle Scholar
  83. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–1508. doi: 10.1016/j.bbamcr.2012.05.009 CrossRefGoogle Scholar
  84. Linde J, Wilson D, Hube B, Guthke R (2010) Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 4:148. doi: 10.1186/1752-0509-4-148 CrossRefGoogle Scholar
  85. Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H (2012) Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a systems biology approach. BMC Syst Biol 6:6. doi: 10.1186/1752-0509-6-6 CrossRefGoogle Scholar
  86. Liu L, Tewari RP, Williamson PR (1999) Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun 67(11):6034–6039Google Scholar
  87. Liu H, Gravelat FN, Chiang LY, Chen D, Vanier G, Ejzykowicz DE, Ibrahim AS, Nierman WC, Sheppard DC, Filler SG (2010) Aspergillus fumigatus AcuM regulates both iron acquisition and gluconeogenesis. Mol Microbiol 78(4):1038–1054. doi: 10.1111/j.1365-2958.2010.07389.x CrossRefGoogle Scholar
  88. Lopez-Berges MS, Capilla J, Turra D, Schafferer L, Matthijs S, Jochl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell. doi: 10.1105/tpc.112.098624
  89. MacDonald J, Suzuki H, Master ER (2012) Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 94(2):339–351. doi: 10.1007/s00253-012-3937-z CrossRefGoogle Scholar
  90. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(Database Issue):D225–D229. doi: 10.1093/nar/gkq1189 CrossRefGoogle Scholar
  91. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–700. doi: 10.1038/nbt967 CrossRefGoogle Scholar
  92. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106(6):1954–1959. doi: 10.1073/pnas.0809575106 CrossRefGoogle Scholar
  93. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273(37):23716–23721CrossRefGoogle Scholar
  94. Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci U S A 90(3):903–907CrossRefGoogle Scholar
  95. Mendil D, Tuzen M, Soylak M (2008) A biosorption system for metal ions on Penicillium italicum-loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J Hazard Mater 152(3):1171–1178. doi: 10.1016/j.jhazmat.2007.07.097 CrossRefGoogle Scholar
  96. Mercier A, Pelletier B, Labbe S (2006) A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 5(11):1866–1881. doi: 10.1128/EC.00199-06 CrossRefGoogle Scholar
  97. Mercier A, Watt S, Bahler J, Labbe S (2008) Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. Eukaryot Cell 7(3):493–508. doi: 10.1128/EC.00446-07 CrossRefGoogle Scholar
  98. Miele R, Barra D, Bonaccorsi di Patti MC (2007) A GATA-type transcription factor regulates expression of the high-affinity iron uptake system in the methylotrophic yeast Pichia pastoris. Arch Biochem Biophys 465(1):172–179. doi: 10.1016/j.abb.2007.05.020 CrossRefGoogle Scholar
  99. Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzym Microb Technol 30(4):562–565CrossRefGoogle Scholar
  100. Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, Roosenberg JM, Moraski G, Minnick AA, McKee-Dolence J, Hu J, Fennell K, Kurt Dolence E, Dong L, Franzblau S, Malouin F, Mollmann U (2009) Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 22(1):61–75. doi: 10.1007/s10534-008-9185-0 CrossRefGoogle Scholar
  101. Montenegro-Montero A, Larrondo LF (2013) Circadian rhythms: from genes to proteins and back, in less than 24-hours. In: McCluskey K, Kasbekar DP (ed) Neurospora: genomics and molecular biology, 1st edn. Caister Academic, Norfolk, pp 243–271Google Scholar
  102. Morrissey JA, Williams PH, Cashmore AM (1996) Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142(Pt 3):485–492CrossRefGoogle Scholar
  103. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  104. Oberegger H, Zadra I, Schoeser M, Abt B, Parson W, Haas H (2002) Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem Soc Trans 30(4):781–783. doi: 10.1042/ CrossRefGoogle Scholar
  105. O'Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, Alspaugh JA (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6(2):e1000776. doi: 10.1371/journal.ppat.1000776 CrossRefGoogle Scholar
  106. Park YS, Kim JH, Cho JH, Chang HI, Kim SW, Paik HD, Kang CW, Kim TH, Sung HC, Yun CW (2007) Physical and functional interaction of FgFtr1–FgFet1 and FgFtr2–FgFet2 is required for iron uptake in Fusarium graminearum. Biochem J 408(1):97–104. doi: 10.1042/BJ20070450 CrossRefGoogle Scholar
  107. Pelletier B, Beaudoin J, Mukai Y, Labbe S (2002) Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe. J Biol Chem 277(25):22950–22958. doi: 10.1074/jbc.M202682200 CrossRefGoogle Scholar
  108. Pelletier B, Trott A, Morano KA, Labbe S (2005) Functional characterization of the iron-regulatory transcription factor Fep1 from Schizosaccharomyces pombe. J Biol Chem 280(26):25146–25161. doi: 10.1074/jbc.M502947200 CrossRefGoogle Scholar
  109. Pelletier B, Mercier A, Durand M, Peter C, Jbel M, Beaudoin J, Labbe S (2007) Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Yeast 24(10):883–900. doi: 10.1002/yea.1539 CrossRefGoogle Scholar
  110. Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763(7):636–645. doi: 10.1016/j.bbamcr.2006.05.008 CrossRefGoogle Scholar
  111. Philpott CC, Protchenko O (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7(1):20–27. doi: 10.1128/EC.00354-07 CrossRefGoogle Scholar
  112. Puig S, Lau M, Thiele DJ (2004) Cti6 is an Rpd3–Sin3 histone deacetylase-associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae. J Biol Chem 279(29):30298–30306. doi: 10.1074/jbc.M313463200 CrossRefGoogle Scholar
  113. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301. doi: 10.1093/nar/gkr1065 CrossRefGoogle Scholar
  114. Qi W (2001) Characterization of biochelators, membrane redox systems, and quinone reductases from wood degrading basidiomycetes. The University of Maine, Electronic theses and dissertations. Paper 340Google Scholar
  115. Qi J, Han A, Yang Z, Li C (2012) Metal-sensing transcription factors Mac1p and Aft1p coordinately regulate vacuolar copper transporter CTR2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 423(2):424–428. doi: 10.1016/j.bbrc.2012.05.150 CrossRefGoogle Scholar
  116. Rodriguez-Rincon F, Suarez A, Lucas M, Larrondo LF, de la Rubia T, Polaina J, Martinez J (2010) Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Arch Microbiol 192(11):883–892. doi: 10.1007/s00203-010-0616-2 CrossRefGoogle Scholar
  117. Roosenberg JM 2nd, Lin YM, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7(2):159–197CrossRefGoogle Scholar
  118. Rustici G, van Bakel H, Lackner DH, Holstege FC, Wijmenga C, Bahler J, Brazma A (2007) Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study. Genome Biol 8(5):R73. doi: 10.1186/gb-2007-8-5-r73 CrossRefGoogle Scholar
  119. Rutherford JC, Jaron S, Winge DR (2003) Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem 278(30):27636–27643. doi: 10.1074/jbc.M300076200 CrossRefGoogle Scholar
  120. Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol. doi: 10.1002/jobm.201100552
  121. Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102(2):269–278CrossRefGoogle Scholar
  122. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200(9):1213–1219. doi: 10.1084/jem.20041242 CrossRefGoogle Scholar
  123. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN Jr, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3(9):1195–1207. doi: 10.1371/journal.ppat.0030128 CrossRefGoogle Scholar
  124. Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jochl C, Moussa TA, Wang S, Gsaller F, Blatzer M, Werner ER, Niermann WC, Brakhage AA, Haas H (2010) HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 6(9):e1001124. doi: 10.1371/journal.ppat.1001124 CrossRefGoogle Scholar
  125. Shashidhar J, Sashidhar RB, Deshpande V (2005a) Purification and characterization of mycoferritin from Aspergillus parasiticus (255). FEMS Microbiol Lett 245(2):287–293. doi: 10.1016/j.femsle.2005.03.022 CrossRefGoogle Scholar
  126. Shashidhar J, Sashidhar RB, Deshpande V (2005b) Role of mycoferritin from Aspergillus parasiticus (255) in secondary metabolism (aflatoxin production). FEMS Microbiol Lett 251(1):113–117. doi: 10.1016/j.femsle.2005.07.033 CrossRefGoogle Scholar
  127. Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z (2003) Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J Biol Chem 278(50):50309–50315. doi: 10.1074/jbc.M307019200 CrossRefGoogle Scholar
  128. Shin YM, Kwon TH, Kim KS, Chae KS, Kim DH, Kim JH, Yang MS (2001) Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl Environ Microbiol 67(3):1280–1283. doi: 10.1128/AEM.67.3.1280-1283.2001 CrossRefGoogle Scholar
  129. Silva MG, Schrank A, Bailao EF, Bailao AM, Borges CL, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJ, Oliveira RM, Silva LK, Nosanchuk JD, Vainstein MH, de Almeida Soares CM (2012) The homeostasis of iron, copper, and zinc in Paracoccidioides brasiliensis, Cryptococcus neoformans var. Grubii, and Cryptococcus gattii: a comparative analysis. Front Microbiol 2:49. doi: 10.3389/fmicb.2011.00049 Google Scholar
  130. Singh A, Kaur N, Kosman DJ (2007) The metalloreductase Fre6p in Fe-efflux from the yeast vacuole. J Biol Chem 282(39):28619–28626. doi: 10.1074/jbc.M703398200 CrossRefGoogle Scholar
  131. Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for neurospora white collar complex. Eukaryot Cell 9(10):1549–1556. doi: 10.1128/EC.00154-10 CrossRefGoogle Scholar
  132. Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271(5255):1552–1557CrossRefGoogle Scholar
  133. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  134. Tanaka A, Kato M, Nagase T, Kobayashi T, Tsukagoshi N (2002) Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species. Biochim Biophys Acta 1576(1–2):176–182Google Scholar
  135. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) The copper–iron connection in biology: structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci U S A 102(43):15459–15464. doi: 10.1073/pnas.0506227102 CrossRefGoogle Scholar
  136. Vakdevi V, Sashidhar RB, Deshpande V (2009) Purification and characterization of mycoferritin from Aspergillus flavus MTCC 873. Indian J Biochem Biophys 46(5):360–365Google Scholar
  137. Validandi V, Rupula K, Beedu SR, Deshpande V (2009) Purification and characterization of mycoferritin from Fusarium verticillioides MRC 826. Biometals 22(6):1063–1073. doi: 10.1007/s10534-009-9257-9 CrossRefGoogle Scholar
  138. Van Ho A, Ward DM, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261. doi: 10.1146/annurev.micro.56.012302.160847 CrossRefGoogle Scholar
  139. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, Kersten PJ, Cullen D (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76(11):3599–3610. doi: 10.1128/AEM.00058-10 CrossRefGoogle Scholar
  140. Wachtershauser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulphur world. Prog Biophys Mol Biol 58(2):85–201CrossRefGoogle Scholar
  141. Wachtershauser G (2000) Origin of life. Life as we don't know it. Science 289(5483):1307–1308CrossRefGoogle Scholar
  142. Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H (2009) Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 75(12):4194–4196. doi: 10.1128/AEM.00479-09 CrossRefGoogle Scholar
  143. Wartmann T, Stephan UW, Bube I, Boer E, Melzer M, Manteuffel R, Stoltenburg R, Guengerich L, Gellissen G, Kunze G (2002) Post-translational modifications of the AFET3 gene product: a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans. Yeast 19(10):849–862. doi: 10.1002/yea.880 CrossRefGoogle Scholar
  144. Williams RJ (2011) Iron in evolution. FEBS Lett 586(5):479–484. doi: 10.1016/j.febslet.2011.05.068 CrossRefGoogle Scholar
  145. Winkelmann G, Carrano CJ (1997) Transition metals in microbial metabolism. Harwood Academic, AmsterdamGoogle Scholar
  146. Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, Kahmann R, Schirawski J (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75(5):1260–1271. doi: 10.1111/j.1365-2958.2010.07048.x CrossRefGoogle Scholar
  147. Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87(1):43–57CrossRefGoogle Scholar
  148. Ziegler L, Terzulli A, Sedlak E, Kosman DJ (2010) Core glycan in the yeast multicopper ferroxidase, Fet3p: a case study of N-linked glycosylation, protein maturation, and stability. Protein Sci 19(9):1739–1750. doi: 10.1002/pro.457 CrossRefGoogle Scholar
  149. Znaidi S, Pelletier B, Mukai Y, Labbe S (2004) The Schizosaccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J Biol Chem 279(10):9462–9474. doi: 10.1074/jbc.M312787200 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations