Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7241–7251 | Cite as

An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides

  • Diana Linke
  • Rene Matthes
  • Manfred Nimtz
  • Holger Zorn
  • Mirko Bunzel
  • Ralf G. Berger
Biotechnologically relevant enzymes and proteins

Abstract

Investigating the secretion of esterases by the basidiomycetous fungus Pleurotus sapidus in a Tween 80-rich nutrient medium, an enzyme was discovered that hydrolyzed the ester bond of feruloylated saccharides. The enzyme was purified by ion exchange and size exclusion chromatography. Polyacrylamide gel electrophoresis analysis showed a monomeric protein of about 55 kDa. The complete coding sequence with an open reading frame of 1,665 bp encoded a protein (Est1) consisting of 554 amino acids. The enzyme showed no significant homology to any published feruloyl esterase sequences, but possessed putative conserved domains of the lipase/esterase superfamily. Substrate specificity studies classified the new enzyme as type-A feruloyl esterase, hydrolyzing methyl ferulate, methyl sinapate, and methyl p-coumarate but no methyl caffeate. The enzyme had a pH optimum of 6 and a temperature optimum at 50 °C. Ferulic acid was efficiently released from ferulated saccharides, and the feruloyl esterase exhibited moderate stability in biphasic systems (50 % toluene or tert-butylmethyl ether).

Keywords

Fungi Basidiomycete Pleurotus sapidus Feruloyl esterase Ferulated saccharides 

Notes

Acknowledgments

We are grateful to E. Allerdings, A. Heinze, and C. Tyl for experimental support. NMR instrumentation was provided with funds from the National Science Foundation (NSF) (BIR-961477), the University of Minnesota Medical School, and the Minnesota Medical Foundation.

References

  1. Allerdings E, Ralph J, Steinhart H, Bunzel M (2006) Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:1276–1286PubMedCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  4. Benoit I, Danchin E, Bleichrodt R-J, de Vries R (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396PubMedCrossRefGoogle Scholar
  5. Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33:345–351CrossRefGoogle Scholar
  6. Carvajal-Millan E, Landillon V, Morel MH, Rouau X, Doublier JL, Micard V (2005) Arabinoxylan gels: impact of the feruloylation degree on their structure and properties. Biomacromolecules 6:309–317PubMedCrossRefGoogle Scholar
  7. Couto J, Karboune S, Mathew R (2010) Regioselective synthesis of feruloylated glycosides using the feruloyl esterases expressed in selected commercial multi-enzymatic preparations as biocatalysts. Biocatal Biotransformation 28:235–244CrossRefGoogle Scholar
  8. Crepin VF, Faulds CB, Connerton IF (2003) A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. Biochem J 370:417–427PubMedCrossRefGoogle Scholar
  9. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652PubMedCrossRefGoogle Scholar
  10. de Vries RP, vanKuyk PA, Kester HCM, Visser J (2002) The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J 363:377–386PubMedCrossRefGoogle Scholar
  11. Donaghy J, McKay AM (1997) Purification and characterization of a feruloyl esterase from the fungus Penicillium expansum. J Appl Microbiol 83:718–726PubMedCrossRefGoogle Scholar
  12. Donnelly PK, Crawford DL (1988) Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl Environ Microbiol 54:2237–2244PubMedGoogle Scholar
  13. Fazary AE, Ju Y-H (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin 39:811–828PubMedCrossRefGoogle Scholar
  14. Freire D, Teles E, Bon E, Anna G (1997) Lipase production by Penicillium restrictum in a bench-scale fermenter. Appl Biochem Biotechnol 63–65:409–421PubMedCrossRefGoogle Scholar
  15. Giuliani S, Piana C, Setti L, Hochkoeppler A, Pifferi PG, Williamson G, Faulds CB (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol Lett 23:325–330CrossRefGoogle Scholar
  16. Hegde S, Muralikrishna G (2009) Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World J Microbiol Biotechnol 25:1963–1969CrossRefGoogle Scholar
  17. Huson DH, Scornavacca C (2012) Dendroscope 3—an interactive viewer for rooted phylogenetic trees and networks. Syst Biol. doi: 10.1093/sysbio/sys062
  18. Koseki T, Takahashi K, Fushinobu S, Iefuji H, Iwano K, Hashizume K, Matsuzawa H (2005) Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochim Biophys Acta 1722:200–208PubMedCrossRefGoogle Scholar
  19. Koseki T, Hori A, Seki S, Murayama T, Shiono Y (2009) Characterization of two distinct feruloyl esterases, AoFaeB and AoFaeC, from Aspergillus oryzae. Appl Microbiol Biotechnol 83:689–696PubMedCrossRefGoogle Scholar
  20. Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ (2000) A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 267:6740–6752PubMedCrossRefGoogle Scholar
  21. Linke D, Zorn H, Gerken B, Parlar H, Berger R (2005) Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus). Lipids 40:323–327PubMedCrossRefGoogle Scholar
  22. MacKenzie CR, Bilous D (1988) Ferulic acid esterase activity from Schizophyllum commune. Appl Environ Microbiol 54:1170–1173PubMedGoogle Scholar
  23. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229PubMedCrossRefGoogle Scholar
  24. Moukouli M, Topakas E, Christakopoulos P (2008) Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Appl Microbiol Biotechnol 79:245–254PubMedCrossRefGoogle Scholar
  25. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292PubMedCrossRefGoogle Scholar
  26. Niehaus JU, Gross GG (1997) A gallotannin degrading esterase from leaves of pedunculate oak. Phytochemistry 45:1555–1560CrossRefGoogle Scholar
  27. Record E, Asther M, Sigoillot C, Pagès S, Punt PJ, Delattre M, Haon M, Van Den Hondel CAMJJ, Sigoillot JC, Lesage-Meessen L (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl Microbiol Biotechnol 62:349–355PubMedCrossRefGoogle Scholar
  28. Rosazza JP, Huang Z, Dostal L, Volm T, Rousseau B (1995) Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471PubMedCrossRefGoogle Scholar
  29. Sancho AI, Faulds CB, Bartolomé B, Williamson G (1999) Characterisation of feruloyl esterase activity in barley. J Sci Food Agric 79:447–449CrossRefGoogle Scholar
  30. Saulnier L, Vigouroux J, J-Fo T (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253PubMedCrossRefGoogle Scholar
  31. Schmidt G, Krings U, Nimtz M, Berger RG (2011) A surfactant tolerant laccase of Meripilus giganteus. World J Microbiol Biotechnol 28:1–10Google Scholar
  32. Shin H-D, Chen RR (2006) Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 38:478–485CrossRefGoogle Scholar
  33. Shin H-D, Chen RR (2007) A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability. Appl Microbiol Biotechnol 73:1323–1330PubMedCrossRefGoogle Scholar
  34. Udatha DBRKG, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110PubMedCrossRefGoogle Scholar
  35. Vafiadi C, Topakas E, Christakopoulos P, Faulds CB (2006) The feruloyl esterase system of Talaromyces stipitatus: determining the hydrolytic and synthetic specificity of TsFaeC. J Biotechnol 125:210–221PubMedCrossRefGoogle Scholar
  36. Wheeler MM, Tarver MR, Coy MR, Scharf ME (2010) Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 73:30–48PubMedGoogle Scholar
  37. Wong DWS (2006) Feruloyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diana Linke
    • 1
  • Rene Matthes
    • 1
  • Manfred Nimtz
    • 2
  • Holger Zorn
    • 3
  • Mirko Bunzel
    • 4
  • Ralf G. Berger
    • 1
  1. 1.Institut für Lebensmittelchemie der Gottfried Wilhelm Leibniz Universität HannoverHannoverGermany
  2. 2.Helmholtz Zentrum für InfektionsforschungBraunschweigGermany
  3. 3.Institut für Lebensmittelchemie und LebensmittelbiotechnologieJustus-Liebig-Universität GießenGießenGermany
  4. 4.Department of Food Science and NutritionUniversity of MinnesotaSt. PaulUSA

Personalised recommendations