Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 8, pp 3395–3408 | Cite as

Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation

  • Haiyan Liu
  • Heguo Yu
  • Yihua Gu
  • Aijie Xin
  • Yonglian Zhang
  • Hua DiaoEmail author
  • Donghai LinEmail author
Biotechnological products and process engineering

Abstract

β-Defensins are cationic, antimicrobial peptides that participate in antimicrobial defense as well as the regulation of innate and adaptive immunity. Human β-defensin 126 (DEFB126) is a multifunctional glycoprotein consisting of a conserved β-defensin core and a unique long glycosylated peptide tail. The long glycosylated peptide tail has been proven to be critical for efficient transport of sperm in the female reproductive tract, preventing their immune recognition, and efficient delivery of capacitated sperm to the site of fertilization. However, the functions of the conserved β-defensin core remain to be fully elucidated. In the present work, the conserved β-defensin core of the DEFB126 was expressed to explore its potential antimicrobial and anti-inflammatory activities. The DEFB126 core peptide exhibited both high potency for binding and neutralizing lipopolysaccharide (LPS) in vitro, and potent anti-inflammatory ability by down-regulating the mRNA expression of pro-inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in a murine macrophage cell line RAW264.7. The treatment with the DEFB126 core peptide also led to correspondingly decreased secretion of IL-6 and TNF-α. The blockade of LPS-induced p42/44 and p38 MAPK signal pathway might contribute to the anti-inflammation effects of the DEFB126 core peptide. Furthermore, fluorescence-labeled DEFB126 could enter RAW 264.7 cells and reduce the production of LPS-stimulated inflammatory factors, implying that DEFB126 might also participate in intracellular regulation beyond its direct LPS neutralization. In summary, our results demonstrate that the DEFB 126 core peptide has critical functions in parallel to its C-terminal tail by showing LPS-binding activity, anti-inflammatory effects and intracellular regulatory function.

Keywords

Defensin 126 LPS Anti-inflammatory Cytokines RAW264.7 

Notes

Acknowledgments

This study was supported by Natural Science Foundation of China (Project Nos. 31101030, 91129713, 31170717, 30900233). Professor Xiangfu Wu (Chinese Academy of Sciences, China) is greatly acknowledged for the provision of E. coli K12D31, professor Guanghua Huang (Chinese Academy of Sciences, China) for C. albicans and professor YuanKang Ye (Tongji Hospital, China) for S. aureus. We thank Dr. Jing Hou for improving the text (language) of this report.

Conflict of interest

The authors declare that there is no conflict of interest that would prejudice the impartiality of this work.

Supplementary material

253_2012_4588_MOESM1_ESM.pdf (176 kb)
ESM 1 (PDF 175 kb)
ESM 2

(MPG 19458 kb)

References

  1. Andra J, Gutsmann T, Garidel P, Brandenburg K (2006) Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res 12(5):261–277Google Scholar
  2. Bhattacharjya S (2010) De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs. Curr Med Chem 17(27):3080–3093CrossRefGoogle Scholar
  3. Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, Jia HP, Tack BF, McCray PB (2003) Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 18(2):95–99CrossRefGoogle Scholar
  4. Cao D, Li Y, Yang R, Wang Y, Zhou Y, Diao H, Zhao Y, Zhang Y, Lu J (2010) Lipopolysaccharide-induced epididymitis disrupts epididymal beta-defensin expression and inhibits sperm motility in rats. Biol Reprod 83(6):1064–1070CrossRefGoogle Scholar
  5. Casallanovo F, de Oliveira FJ, de Souza FC, Ros U, Martinez Y, Penton D, Tejuca M, Martinez D, Pazos F, Pertinhez TA, Spisni A, Cilli EM, Lanio ME, Alvarez C, Schreier S (2006) Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers 84(2):169–180CrossRefGoogle Scholar
  6. Corrales-Garcia LL, Possani LD, Corzo G (2010) Expression systems of human beta-defensins: vectors, purification and biological activities. Amino Acids 40(1):5–13CrossRefGoogle Scholar
  7. de Haas CJ, Haas PJ, van Kessel KP, van Strijp JA (1998) Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochem Biophys Res Commun 252(2):492–496CrossRefGoogle Scholar
  8. Diao H, Guo C, Lin D, Zhang Y (2007) Intein-mediated expression is an effective approach in the study of beta-defensins. Biochem Biophys Res Commun 357(4):840–846CrossRefGoogle Scholar
  9. Diao H, Yu HG, Sun F, Zhang YL, Tanphaichitr N (2010) Rat recombinant beta-defensin 22 is a heparin-binding protein with antimicrobial activity. Asian J Androl 13(2):305–311CrossRefGoogle Scholar
  10. Dong J, Yu H, Zhang Y, Diao H, Lin D (2011) Soluble fusion expression and characterization of human beta-defensin 3 using a novel approach. Protein Pept Lett 18(11):1126–1132CrossRefGoogle Scholar
  11. Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425CrossRefGoogle Scholar
  12. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL, Reinisch W, Teml A, Schwab M, Lichter P, Radlwimmer B, Stange EF (2006) A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79(3):439–448CrossRefGoogle Scholar
  13. Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306(2):257–264Google Scholar
  14. Hall SH, Yenugu S, Radhakrishnan Y, Avellar MC, Petrusz P, French FS (2007) Characterization and functions of beta defensins in the epididymis. Asian J Androl 9(4):453–462CrossRefGoogle Scholar
  15. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165(2):618–622Google Scholar
  16. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40(1):23–25CrossRefGoogle Scholar
  17. Huang L, Leong SS, Jiang R (2009) Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl Microbiol Biotechnol 84(2):301–308CrossRefGoogle Scholar
  18. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15(2):153–164CrossRefGoogle Scholar
  19. Kagan BL, Ganz T, Lehrer RI (1994) Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology 87(1–3):131–149CrossRefGoogle Scholar
  20. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63(4):1291–1297Google Scholar
  21. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738CrossRefGoogle Scholar
  22. Lund-Katz S, Nguyen D, Dhanasekaran P, Kono M, Nickel M, Saito H, Phillips MC (2010) Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. J Lipid Res 51(3):606–617CrossRefGoogle Scholar
  23. Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3(1):36–46CrossRefGoogle Scholar
  24. Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E (2006) The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 20(10):1701–1702CrossRefGoogle Scholar
  25. Ng PM, Jin Z, Tan SS, Ho B, Ding JL (2004) C-reactive protein: a predominant LPS-binding acute phase protein responsive to Pseudomonas infection. J Endotoxin Res 10(3):163–174Google Scholar
  26. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14(4):421–426CrossRefGoogle Scholar
  27. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G (2005) Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genom 23(1):5–17CrossRefGoogle Scholar
  28. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313CrossRefGoogle Scholar
  29. Rhule A, Navarro S, Smith JR, Shepherd DM (2006) Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol 106(1):121–128CrossRefGoogle Scholar
  30. Rieg S, Meier B, Fahnrich E, Huth A, Wagner D, Kern WV, Kalbacher H (2010) Differential activity of innate defense antimicrobial peptides against Nocardia species. BMC Microbiol 10:61CrossRefGoogle Scholar
  31. Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem 281(3):1636–1643CrossRefGoogle Scholar
  32. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379CrossRefGoogle Scholar
  33. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ (1990) Structure and function of lipopolysaccharide binding protein. Science 249(4975):1429–1431CrossRefGoogle Scholar
  34. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99(4):2129–2133CrossRefGoogle Scholar
  35. Scott MG, Vreugdenhil AC, Buurman WA, Hancock RE, Gold MR (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J Immunol 164(2):549–553Google Scholar
  36. Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, Gray M, Davidson DJ, Dorin JR (2010) Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 40(4):1073–1078CrossRefGoogle Scholar
  37. Semple F, MacPherson H, Webb S, Cox SL, Mallin LJ, Tyrrell C, Grimes GR, Semple CA, Nix MA, Millhauser GL, Dorin JR (2011) Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol 41(11):3291–3300CrossRefGoogle Scholar
  38. Suttles J, Carruth LM, Mizel SB (1990) Detection of IL-1 alpha and IL-1 beta in the supernatants of paraformaldehyde-treated human monocytes. Evidence against a membrane form of IL-1. J Immunol 144(1):170–174Google Scholar
  39. Svinarich DM, Wolf NA, Gomez R, Gonik B, Romero R (1997) Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 176(2):470–475CrossRefGoogle Scholar
  40. Tollner TL, Yudin AI, Tarantal AF, Treece CA, Overstreet JW, Cherr GN (2008) Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol Reprod 78(3):400–412CrossRefGoogle Scholar
  41. Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, Xing H, Kays RJ, Lau T, Overstreet JW, Xu X, Bevins CL, Cherr GN (2011) A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med 3(92):92ra65CrossRefGoogle Scholar
  42. Tollner TL, Bevins CL, Cherr GN (2012) Multifunctional glycoprotein DEFB126—a curious story of defensin-clad spermatozoa. Nat Rev Urol 9(7):365–375CrossRefGoogle Scholar
  43. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L (2005) Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev 206:306–335CrossRefGoogle Scholar
  44. Xu Z, Huang CX, Li Y, Wang PZ, Ren GL, Chen CS, Shang FJ, Zhang Y, Liu QQ, Jia ZS, Nie QH, Sun YT, Bai XF (2007) Toll-like receptor 4 siRNA attenuates LPS-induced secretion of inflammatory cytokines and chemokines by macrophages. J Infect 55(1):e1–e9CrossRefGoogle Scholar
  45. Yudin AI, Generao SE, Tollner TL, Treece CA, Overstreet JW, Cherr GN (2005) Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol Reprod 73(6):1243–1252CrossRefGoogle Scholar
  46. Zanoni I, Granucci F (2010) Differences in lipopolysaccharide-induced signaling between conventional dendritic cells and macrophages. Immunobiology 215(9–10):709–712CrossRefGoogle Scholar
  47. Zhang W, Wei Q (2011) Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6. Biochem Biophys Res Commun 407(4):668–673CrossRefGoogle Scholar
  48. Zhang M, Qiu Z, Li Y, Yang Y, Zhang Q, Xiang Q, Su Z, Huang Y (2012) Construction and characterization of a recombinant human beta defensin 2 fusion protein targeting the epidermal growth factor receptor: in vitro study. Appl Microbiol BiotechnolGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
  2. 2.NPFPC Key Laboratory of Contraceptives and DevicesShanghai Institute of Planned Parenthood ResearchShanghaiChina
  3. 3.Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations