Applied Microbiology and Biotechnology

, Volume 97, Issue 2, pp 561–571 | Cite as

Marine bacteria: potential candidates for enhanced bioremediation

  • Hirak R. Dash
  • Neelam Mangwani
  • Jaya Chakraborty
  • Supriya Kumari
  • Surajit Das


Bacteria are widespread in nature as they can adapt to any extreme environmental conditions and perform various physiological activities. Marine environments are one of the most adverse environments owing to their varying nature of temperature, pH, salinity, sea surface temperature, currents, precipitation regimes and wind patterns. Due to the constant variation of environmental conditions, the microorganisms present in that environment are more suitably adapted to the adverse conditions, hence, possessing complex characteristic features of adaptation. Therefore, the bacteria isolated from the marine environments are supposed to be better utilized in bioremediation of heavy metals, hydrocarbon and many other recalcitrant compounds and xenobiotics through biofilm formation and production of extracellular polymeric substances. Many marine bacteria have been reported to have bioremediation potential. The advantage of using marine bacteria for bioremediation in situ is the direct use of organisms in any adverse conditions without any genetic manipulation. This review emphasizes the utilization of marine bacteria in the field of bioremediation and understanding the mechanism behind acquiring the characteristic feature of adaptive responses.


Marine bacteria Adaptation Stress response Diversity Bioremediation 



The authors would like to acknowledge the authorities of NIT, Rourkela for providing facilities. H.R.D., N.M., and J.C. gratefully acknowledge the receipt of research fellowship from the Ministry of Human Resource Development, Government of India. S.K. thanks the Department of Biotechnology, Government of India for a research fellowship. S.D. acknowledges the research grant on utilization of marine bacterial biofilm for enhanced bioremediation from the Department of Biotechnology, Government of India.


  1. Abdelatey LM, Khalil WKB, Ali TH, Mahrous KF (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in Gram-positive and Gram-negative bacteria present in egyptian soils. J Appl Sci Env San 6:201–211Google Scholar
  2. Abd-Elnaby H, Abou-Elela GM, EI-Sersy NA (2011) Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. African J Biotechnol 10:3412–3423Google Scholar
  3. Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytorem 5:367–380Google Scholar
  4. Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100CrossRefGoogle Scholar
  5. Alexander DE (1999) Encyclopedia of environmental science. Springer, New York, 0-412-74050-8Google Scholar
  6. Amidei R (1997) Marine bacteria: a better cleaner-upper? California Agri 51:47–48CrossRefGoogle Scholar
  7. Andrady AL (2011) Microplastics in the marine environment. Mar Poll Bull 62:1596–1605CrossRefGoogle Scholar
  8. Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Met 32:155–164CrossRefGoogle Scholar
  9. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  10. Banin ED, Vassilakos E, Orr R, Martinez J, Rosenberg E (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422CrossRefGoogle Scholar
  11. Banin E, Khare SK, Naider F, Rosenberg E (2001a) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol 67:1536–1541CrossRefGoogle Scholar
  12. Banin ET, Israely M, Fine Y, Loya RE (2001b) Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol Lett 199:33–37CrossRefGoogle Scholar
  13. Bedford RH (1933) Marine bacteria of the northern Pacific Ocean. The temperature range of growth. Contrib Can Biol Fisheries 8:433–438CrossRefGoogle Scholar
  14. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic Sea ice. Appl Environ Microbiol 63:3068–3078Google Scholar
  15. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP (2000) Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90CrossRefGoogle Scholar
  16. Brinkmeyer R, Knitte K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic Pack Ice. Appl Environ Microbiol 69:6610–6619CrossRefGoogle Scholar
  17. Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific Ocean. ISME J 3:1374–1386CrossRefGoogle Scholar
  18. Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993Google Scholar
  19. Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS (2012) Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:3229–3233CrossRefGoogle Scholar
  20. Canstein H, Kelly S, Li Y, Wagner-Dobler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837CrossRefGoogle Scholar
  21. Carvalho CCCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8:705–727CrossRefGoogle Scholar
  22. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  23. Cheung KH, Gu JD (2003) Reduction of chromate (CrO4 2−) by an enrichment consortium and an isolate of marine sulfate reducing bacteria. Chemosphere 52:1523–1529CrossRefGoogle Scholar
  24. Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592CrossRefGoogle Scholar
  25. Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966CrossRefGoogle Scholar
  26. Crossland CJ, Kremer HH, Lindeboom HJ, Crossland JIM, Le Tissier MDA (eds) (2005) Coastal fluxes in the anthropocene—the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Global change—the International Geosphere-Biosphere Program Series. Springer, BerlinGoogle Scholar
  27. Czyz A, Jasiecki J, Bogdan A, Szpilewska H, Grzyn GW (2000) Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol 66:599–605CrossRefGoogle Scholar
  28. Das S, Elavarasi A, Lyla PS, Khan SA (2009) Biosorption of heavy metals by marine bacteria: potential tool for detecting marine pollution. Environ Health 9:38–43Google Scholar
  29. Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: present status and future perspectives. Curr Sci 90:1325–1335Google Scholar
  30. Das S, Shanmugapriya R, Lyla PS, Khan SA (2007) Heavy metal tolerance of marine bacteria—an index of marine pollution. Nat Acad Sci Lett (India) 30:279–284Google Scholar
  31. Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRefGoogle Scholar
  32. Davidson A, Belbin L (2002) Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on the marine microbial community. Aquat Microb Ecol 27:159–174CrossRefGoogle Scholar
  33. De Rore H, Top E, Houwen F, Mergcay M, Verstraete W (1994) Evolution of heavy metal-resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol Ecol 14:263–273CrossRefGoogle Scholar
  34. De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477CrossRefGoogle Scholar
  35. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470CrossRefGoogle Scholar
  36. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Poll Bull 44:842–852CrossRefGoogle Scholar
  37. Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951CrossRefGoogle Scholar
  38. Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 69:3044–3051CrossRefGoogle Scholar
  39. El-Deeb B (2009) Natural combination of genetic systems for degradation of phenol and resistance to heavy metals in phenol and cyanide assimilating bacteria. Malaysian J Microbiol 5:94–103Google Scholar
  40. Ettema TJ, Andersson SG (2009) The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432CrossRefGoogle Scholar
  41. Gallego JLR, Loredo J, Lamas JF, Azquez FV, Anchez JS (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335CrossRefGoogle Scholar
  42. Gianoulis TA, Raesb J, Patelc PV, Bjornsond R, Korbelc JO, Letunicb I, Yamadab T, Paccanaroe A, Jensenb LJ, Snyderc M, Borkb P, Gerstein MB (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. PNAS 106:1374–1379CrossRefGoogle Scholar
  43. Gontang ER, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediment. Appl Environ Microbiol 73:3272–3282CrossRefGoogle Scholar
  44. Hase CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370CrossRefGoogle Scholar
  45. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65:251–259Google Scholar
  46. Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar oceans. Oceanography 20:140–145CrossRefGoogle Scholar
  47. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS Microbiol 103:2815–2820CrossRefGoogle Scholar
  48. Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343CrossRefGoogle Scholar
  49. Jiang P, Li J, Han F, Duan G, Lu X (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6. doi: 10.1371/journal.pone.0018514
  50. Kainth P, Gupta RS (2005) Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics. doi: 10.1186/1471-2164-6-94
  51. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067CrossRefGoogle Scholar
  52. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a Review. Enzyme Res. doi: 10.4061/2011/805187
  53. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510CrossRefGoogle Scholar
  54. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633CrossRefGoogle Scholar
  55. Kathiresan K (2003) Polythene and Plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–634Google Scholar
  56. Kivela HM, Madonna S, Krupovic M, Tutino ML, Bamford JKH (2008) Genetics for Pseudoalteromonas provides tools to manipulate marine bacterial virus PM2. J Bacteriol 190:1298–1307CrossRefGoogle Scholar
  57. Kumamaru T, Suenaga H, Mitsuoka M, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666CrossRefGoogle Scholar
  58. Latha K, Lalithakumari D (2001) Transfer and expression of a hydrocarbon degrading plasmid pHCL from Pseudomonas putida to marine bacteria. World J Microbiol Biotechnol 17:523–528CrossRefGoogle Scholar
  59. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Hang CS, Brown MV, Robb FT, Kjelleberga S, Cavicchiol R (2009) The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–15533CrossRefGoogle Scholar
  60. Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Yu Ni J, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585CrossRefGoogle Scholar
  61. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522Google Scholar
  62. Loka Bharathi PA, Nair S (2005) Rise of the dormant: simulated disturbance improves culturable abundance, diversity and functions of deep-sea bacteria of Central Indian Ocean Basin. Mar Georesour Geotechnol 23:419–428CrossRefGoogle Scholar
  63. Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095CrossRefGoogle Scholar
  64. MacLeod RA, Onofrey E (1957) Nutrition and metabolism of marine bacteria. III. The relation of sodium and potassium to growth. J Cell Compar Physiol 50:389–401CrossRefGoogle Scholar
  65. Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791Google Scholar
  66. Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227CrossRefGoogle Scholar
  67. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefGoogle Scholar
  68. Martiny AC, Huang Y, Li WZ (2009) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ Microbiol 11:1340–1347CrossRefGoogle Scholar
  69. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of inter-molecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16CrossRefGoogle Scholar
  70. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary. Environ Microbiol 9:165–176CrossRefGoogle Scholar
  71. Mukherji S, Jagadevan S, Mohapatra G, Vijay A (2004) Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour Technol 95:281–286CrossRefGoogle Scholar
  72. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798CrossRefGoogle Scholar
  73. Nwadinigwe AO, Onyeidu EG (2012) Bioremediation of crude oil polluted soil using bacteria and poultry manure monitored through soybean productivity. Pol J Environ Stud 21:171–176Google Scholar
  74. Nweke CO, Okpokwasili GC (2003) Drilling fluid base oil biodegradation potential of a soil Staphylococcus species. African J Biotechnol 2:293–295Google Scholar
  75. Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G (2012) Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol 63:543–551CrossRefGoogle Scholar
  76. Ohtake H, Takahashi K, Tsuzuki Y, Toda K (1985) Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res 19:1587–1594CrossRefGoogle Scholar
  77. Panwichian S, Kantachote D, Wittayaweerasa B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple non sulphur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol. 14: ISSN: 0717–3458Google Scholar
  78. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opinion Biotechnol 11:262–270CrossRefGoogle Scholar
  79. Piskorska M, Smith G, Weil E (2007) Bacteria associated with the coral Echinopora lamellosa (Esper 1795) in the Indian Ocean—Zanzibar Region. Afr J Environ Sci Technol 1:093–098Google Scholar
  80. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802CrossRefGoogle Scholar
  81. Prakash D, Raushan RK, Sangodkar UX (2008) Isolation and characterization of meta-toluic acid degrading marine bacterium. Indian J Mar Sci 37:322–325Google Scholar
  82. Pratt D, Happold FC (1960) Requirements for indole production by cells and extracts of a marine bacterium. J Bacteriol 80:232–236Google Scholar
  83. Rainbow PS (1995) Bio monitoring of heavy metal availability in the marine environment. Mar Poll Bull 31:183–192CrossRefGoogle Scholar
  84. Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384CrossRefGoogle Scholar
  85. Rhodes ME, Payne WJ (1962) Further observations on effects of cations on enzyme induction in marine bacteria. Antonie van Leeuwenhoek. J Microbiol Serol 28:302–314Google Scholar
  86. Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of beta-glutamate, a novelosmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508Google Scholar
  87. Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212CrossRefGoogle Scholar
  88. Ruby EW, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165Google Scholar
  89. Safary A, Ardakani MR, Suraki AA, Khiavi MA, Motamedi H (2010) Isolation and characterization of biosurfactant producing bacteria from Caspian Sea. Biotechnol 9:378–382CrossRefGoogle Scholar
  90. Sakalle K, Rajkumar S (2009) Isolation of crude oil degrading marine bacteria and assessment for biosurfactant production. The Internet J Microbiol 7(2). doi: 10.5580/1d0e
  91. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248CrossRefGoogle Scholar
  92. Sanchez-Romero JM, Diaz-Orejas R, de Lorenzo V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046Google Scholar
  93. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C (2010) Isolation and characterization of biodegradable plastic degrading bacteria from deep sea environments. Rep Res De 11:33–41Google Scholar
  94. Selvaratnam S, Schoedel BA, McFarland BL, Kulpa CF (1997) Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenoldegrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl Microbiol Biotechnol 47:236–240CrossRefGoogle Scholar
  95. Sode K, Yamamoto Y, Hatano N (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene. J Mar Biotechnol 6:174–177Google Scholar
  96. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Hernd GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Nat Acad Sci 103:12115–12120CrossRefGoogle Scholar
  97. Stanley ME (2005) Environmental chemistry. CRC, Boca Raton. ISBN 1-56670-633-5Google Scholar
  98. Stevens T, Armitage S, Lu H, Thomas DSG (2007) Examining the potential of high resolution OSL dating of Chinese loess. Quater Geochronol 2:15–22CrossRefGoogle Scholar
  99. Stramski D, Kiefer DA (1998) Can heterotrophic bacteria be important to marine light absorption? J Planktonic Res 20:1489–1500CrossRefGoogle Scholar
  100. Sutiknowati LI (2007) Hydrocarbon degrading bacteria: isolation and identification. Makara Sains 11:98–103Google Scholar
  101. Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefGoogle Scholar
  102. Takeuchi K, Fujioka Y, Kawasaki Y, Shirayama Y (1997) Impacts of high concentrations of CO2 on marine organisms: a modification of CO2 ocean sequestration. Energy Convers Mgmt 38:S337–S341CrossRefGoogle Scholar
  103. Teramoto M, Suzuki M, Okazaki F, Hatmanti A, Harayama S (2009) Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370CrossRefGoogle Scholar
  104. United States Environmental Protection Agency. 2006. "Marine ecosystems"
  105. Vijayaraghavan R, Rajendran S (2011) Studies on agar degrading Salegentibacter sp. and characterization of its agarase. Int J Biosci 1:56–64Google Scholar
  106. Winter RB, Yen K, Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia Coli. Biotechnology 7:282–285CrossRefGoogle Scholar
  107. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi: 10.5402/2011/402647
  108. Zobell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanog 5:239–292Google Scholar
  109. Zobell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568Google Scholar
  110. Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microbial Ecol 12:65–78CrossRefGoogle Scholar
  111. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554CrossRefGoogle Scholar
  112. Jannasch HW, Wirsen CO (1984) Variability of pressure adaptation in deep sea bacteria. Arch Microbiol 139:281–288CrossRefGoogle Scholar
  113. Chen W, Bruhlmann F, Richins RD, Mulchandani A (1999) Engineering of improved microbes and enzymes for bioremediation. Curr Opin Biotechnol 10:137–141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hirak R. Dash
    • 1
  • Neelam Mangwani
    • 1
  • Jaya Chakraborty
    • 1
  • Supriya Kumari
    • 1
  • Surajit Das
    • 1
  1. 1.Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life ScienceNational Institute of TechnologyRourkelaIndia

Personalised recommendations