Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 7, pp 2877–2884 | Cite as

Construction and expression of sTRAIL–melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli

  • Hongyan Liu
  • Yangyang Han
  • Haiyan Fu
  • Meng Liu
  • Jing Wu
  • Xiaonan Chen
  • Shuangquan Zhang
  • Yuqing ChenEmail author
Biotechnological products and process engineering

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as an anticancer protein with tumor-selective apoptotic activity, has been examined for use in clinical application. Melittin, an antibacterial peptide isolated from the bee Apis mellifera, has shown strong cytotoxicity to both tumor and normal cells. To ameliorate the cytotoxicity of melittin on cells and enhance the activity of TRAIL on cancer cells, we constructed a novel fusion protein, sTRAIL–melittin, containing a small ubiquitin-related modifier (SUMO) tag and expressed this fusion protein in Escherichia coli. Data showed that expression of the soluble fusion protein with the SUMO tag was approximately 85 % of total target protein which was much higher than that without the SUMO tag (approximately 10 %); sTRAIL–melittin was easily purified using Ni-NTA affinity chromatography and the tag was removed easily using SUMO-specific protease. To assay anticancer activity and side effects, methyl thiazolyl tetrazolium, hemolytic, and apoptosis assays were employed. Results demonstrated that sTRAIL–melittin had cytotoxic and apoptotic activity in K562 leukemia cells and HepG2 liver carcinoma cells, while it had only a minimal effect on erythrocytes and normal HEK293 cells. This indicates that the cytotoxicity of sTRAIL–melittin in normal cells was low and the anticancer activity of the fusion protein in tumor cells was significantly enhanced compared with sTRAIL (P < 0.01). Furthermore, we found that sTRAIL–melittin also showed antibacterial activity to Staphylococcus aureus due to the presence of the melittin domain. Therefore, TRAIL fused with an antibacterial peptide may be a promising novel TRAIL-based anticancer treatment strategy.

Keywords

SUMO sTRAIL Melittin Anticancer Escherichia coli 

Notes

Acknowledgments

This work was financially supported by a grant of the National Natural Science Foundation of China (Grant no. 30900743), the Natural Science Foundation of Jiangsu Province of China (Grant no. BK2011368), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant no. 2008104TSJ0096), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279:55042–55050. doi: 10.1074/jbc.m408881200 CrossRefGoogle Scholar
  2. Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC (2008) Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J Biol Chem 283:13021–13030. doi: 10.1074/jbc.m709698200 CrossRefGoogle Scholar
  3. Bodmer JL, Meier P, Tschopp J, Schneider P (2000) Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 275:20632–20637. doi: 10.1074/jbc.m909721199 CrossRefGoogle Scholar
  4. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965. doi: 10.1016/j.peptides.2010.08.008 CrossRefGoogle Scholar
  5. Bremer E, van Dam GM, de Bruyn M, van Riezen M, Dijkstra M, Kamps G, Helfrich W, Haisma H (2008) Potent systemic anticancer activity of adenovirally expressed EGFR-selective TRAIL fusion protein. Mol Ther 16:1919–1926. doi: 10.1038/mt.2008.203 CrossRefGoogle Scholar
  6. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expres Purif 43:1–9. doi: 10.1016/j.pep. 2005.03.016 CrossRefGoogle Scholar
  7. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054Google Scholar
  8. Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31:1504–1510. doi: 10.1016/j.peptides.2010.05.010 CrossRefGoogle Scholar
  9. Dempsey CE (1990) The actions of melittin on membranes. BBA-Biomembranes 1031:143–161. doi: 10.1016/0304-4157(90)90006-x CrossRefGoogle Scholar
  10. Dorsey JF, Mintz A, Tian X, Dowling ML, Plastaras JP, Dicker DT, Kao GD, El-Deiry WS (2009) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and paclitaxel have cooperative in vivo effects against glioblastoma multiforme cells. Mol Cancer Ther 8:3285–3295. doi: 10.1158/1535-7163.mct-09-0415 CrossRefGoogle Scholar
  11. Dunn RD, Weston KM, Longhurst TJ, Lilley GG, Rivett DE, Hudson PJ, Raison RL (1996) Antigen binding and cytotoxic properties of a recombinant immunotoxin incorporating the lytic peptide, melittin. Immunotechnology 2:229–240. doi: 10.1016/s1380-2933(96)00055-3 CrossRefGoogle Scholar
  12. Gao X, Chen W, Guo C, Qian C, Liu G, Ge F, Huang Y, Kitazato K, Wang Y, Xiong S (2010) Soluble cytoplasmic expression, rapid purification, and characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol Biotechnol 85:1051–1060. doi: 10.1007/s00253-009-2078-5 CrossRefGoogle Scholar
  13. Gasparian ME, Ostapchenko VG, Yagolovich AV, Tsygannik IN, Chernyak BV, Dolgikh DA, Kirpichnikov MP (2007) Overexpression and refolding of thioredoxin/TRAIL fusion from inclusion bodies and further purification of TRAIL after cleavage by enteropeptidase. Biotechnol Lett 29:1567–1573. doi: 10.1007/s10529-007-9446-y CrossRefGoogle Scholar
  14. Heinen TE, da Veiga AB (2011) Arthropod venoms and cancer. Toxicon 57:497–511. doi: 10.1016/j.toxicon.2011.01.002 CrossRefGoogle Scholar
  15. Holoch PA, Griffith TS (2009) TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 625:63–72. doi: 10.1016/j.ejphar.2009.06.066 CrossRefGoogle Scholar
  16. Ip SW, Chu YL, Yu CS, Chen PY, Ho HC, Yang JS, Huang HY, Chueh FS, Lai TY, Chung JG (2012) Bee venom induces apoptosis through intracellular Ca2+-modulated intrinsic death pathway in human bladder cancer cells. Int J Urol 19(1):61–70. doi: 10.1111/j.1442-2042.2011.02876.x CrossRefGoogle Scholar
  17. Kang H, Sun AY, Shen YL, Wei DZ (2007) Refolding and structural characteristic of TRAIL/Apo2L inclusion bodies from different specific growth rates of recombinant Escherichia coli. Biotechnol Progr 23:286–292. doi: 10.1021/bp060238c CrossRefGoogle Scholar
  18. Li JF, Zhang J, Xu XZ, Han YY, Cui XW, Chen YQ, Zhang SQ (2011) The antibacterial peptide ABP-CM4: the current state of its production and applications. Amino acids 42(6):2393–2402. doi: 10.1007/s00726-011-0982-3 CrossRefGoogle Scholar
  19. Lin Z, Lei H, Cao P (2007) Expression, purification and in vitro refolding of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Protein Expres Purif 51:276–282. doi: 10.1016/j.pep. 2006.07.026 CrossRefGoogle Scholar
  20. Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (2008) Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 47:1964–1973. doi: 10.1002/hep. 22240 CrossRefGoogle Scholar
  21. Miran J, Mi HP, Pushpa SK, Byeong JA, Ho SS, Sang BH, Jang HK, Min JS, Jin TH (2011) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharm 258:72–81. doi: 10.1016/j.taap. 2011.10.009 Google Scholar
  22. Moon DO, Park SY, Choi YH, Kim ND, Lee C, Kim GY (2008) Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon 51:112–120. doi: 10.1016/j.toxicon.2007.08.015 CrossRefGoogle Scholar
  23. Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, Chang YC (2010) Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-κB and AP-1-dependent MMP-9 expression. Mol Cells 29:209–215. doi: 10.1007/s10059-010-0028-9 CrossRefGoogle Scholar
  24. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690CrossRefGoogle Scholar
  25. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223. doi: 10.1007/s10540-006-9030-z CrossRefGoogle Scholar
  26. Satakarni M, Curtis R (2010) Production of recombinant peptides as fusions with SUMO. Protein Expres Purif 78:113–119. doi: 10.1016/j.pep. 2011.04.015 CrossRefGoogle Scholar
  27. Tang HY, Qin Y, Li JY, Gong XG (2011) The scavenging of superoxide radicals promotes apoptosis induced by a novel cell-permeable fusion protein, sTRAIL:FeSOD, in tumor necrosis factor-related apoptosis-inducing ligand-resistant leukemia cells. BMC Biol 9:18. doi: 10.1186/1741-7007-9-18 CrossRefGoogle Scholar
  28. Wang DM, Shi LM (2009) High-level expression, purification and in vitro refolding of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Appl Biochem Biotechnol 157:1–9. doi: 10.1007/s12010-007-8079-x CrossRefGoogle Scholar
  29. Wang C, Chen TY, Zhang N, Yang MJ, Li B, Lu X, Cao XT, Ling C (2009) Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IκBα Kinase-NFκB. J Biol Chem 284:3804–3813. doi: 10.1074/jbc.m807191200 CrossRefGoogle Scholar
  30. Wang GL, Na J, Pan LZ, Xing Z, Fang HJ (2011) Ultrastructural observation on sterilization of melittin. Sci China Life Sci 54:166–170. doi: 10.1007/s11427-010-4118-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hongyan Liu
    • 1
  • Yangyang Han
    • 1
  • Haiyan Fu
    • 1
  • Meng Liu
    • 1
  • Jing Wu
    • 1
  • Xiaonan Chen
    • 1
  • Shuangquan Zhang
    • 1
  • Yuqing Chen
    • 1
    Email author
  1. 1.Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences CollegeNanjing Normal UniversityNanjingChina

Personalised recommendations