Advertisement

Applied Microbiology and Biotechnology

, Volume 96, Issue 6, pp 1441–1454 | Cite as

Effects of encapsulation of microorganisms on product formation during microbial fermentations

  • Johan O. Westman
  • Päivi Ylitervo
  • Carl Johan Franzén
  • Mohammad J. TaherzadehEmail author
Mini-Review

Abstract

This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, l-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed.

Keywords

Encapsulation Microbial cell Whole-cell biocatalyst Ethanol Lactic acid 

Notes

Acknowledgments

The authors appreciate financial support by the Swedish Research Council and the University of Borås in Sweden.

References

  1. Abelyan V (2000) A new method for immobilization of microbial cells by cross-linking. Appl Biochem Microbiol 36(3):310–314. doi: 10.1007/bf02742586 CrossRefGoogle Scholar
  2. Alosta HA (2007) Riboflavin production by encapsulated Candida flareri. PhD thesis, Oklahoma State University, StillwaterGoogle Scholar
  3. Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Tech 18(5):240–251. doi: 10.1016/j.tifs.2007.01.004 CrossRefGoogle Scholar
  4. Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174(4):217–224. doi: 10.1007/s002030000192 CrossRefGoogle Scholar
  5. Bhatia SR, Khattak SF, Roberts SC (2005) Polyelectrolytes for cell encapsulation. Curr Opin Colloid In 10:45–51. doi: 10.1016/j.cocis.2005.05.004 CrossRefGoogle Scholar
  6. Boender LGM, de Hulster EAF, van Maris AJA, Daran-Lapujade PAS, Pronk JT (2009) Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microbiol 75(17):5607–5614. doi: 10.1128/aem.00429-09 CrossRefGoogle Scholar
  7. Boender LGM, van Maris AJA, de Hulster EAF, Almering MJH, van der Klei IJ, Veenhuis M, de Winde JH, Pronk JT, Daran-Lapujade P (2011) Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures. FEMS Yeast Res 11(8):603–620. doi: 10.1111/j.1567-1364.2011.00750.x CrossRefGoogle Scholar
  8. Brandberg T, Karimi K, Taherzadeh MJ, Franzén CJ, Gustafsson L (2007) Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention. Biotechnol Bioeng 98(1):80–90. doi: 10.1002/bit.21410 CrossRefGoogle Scholar
  9. Bučko M, Vikartovská A, Lacík I, Kolláriková G, Gemeiner P, Pätoprstý V, Brygin M (2005) Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzym Microb Tech 36(1):118–126. doi: 10.1016/j.enzmictec.2004.07.006 CrossRefGoogle Scholar
  10. Bučko M, Vikartovská A, Gemeiner P, Lacík I, Kolláriková G, Marison IW (2006) Nocardia tartaricans cells immobilized in sodium alginate–cellulose sulfate–poly(methylene-co-guanidine)capsules: mechanical resistance and operational stability. J Chem Technol Biotechnol 81(4):500–504. doi: 10.1002/jctb.1466 CrossRefGoogle Scholar
  11. Bučko M, Schenkmayerová A, Gemeiner P, Vikartovská A, Mihovilovič MD, Lacík I (2011) Continuous testing system for Baeyer–Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzym Microb Tech 49(3):284–288. doi: 10.1016/j.enzmictec.2011.05.013 CrossRefGoogle Scholar
  12. Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci Pol Chem 41(24):3941–3953. doi: 10.1002/pola.10960 CrossRefGoogle Scholar
  13. Carstensen F, Apel A, Wessling M (2012) In situ product recovery: submerged membranes vs. external loop membranes. J Membr Sci 394–395(0):394–395. doi: 10.1016/j.memsci.2011.11.029 Google Scholar
  14. Chai Y, Mei L-H, Wu G-L, Lin D-Q, Yao S-J (2004) Gelation conditions and transport properties of hollow calcium alginate capsules. Biotechnol Bioeng 87(2):228–233. doi: 10.1002/bit.20144 CrossRefGoogle Scholar
  15. Chandy T, Mooradian Daniel L, Rao Gundu HR (1999) Evaluation of modified alginate–chitosan–polyethylene glycol microcapsules for cell encapsulation. Artif Organs 23(10):894–903. doi: 10.1046/j.1525-1594.1999.06244.x CrossRefGoogle Scholar
  16. Chang TMS (1964) Semipermeable microcapsules. Science 146:524–525. doi: 10.1126/science.146.3643.524 CrossRefGoogle Scholar
  17. Chang HN, Seong GH, Yoo I-K, Park JK, Seo J-H (1996) Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnol Bioeng 51:157–162. doi: 10.1002/(SICI)1097-0290(19960720)51:2<157::AID-BIT4>3.0.CO;2-I CrossRefGoogle Scholar
  18. Chang HN, Seong GH, Yoo I-K, Park JK, Seo J-H (1998) Method for immobilization of whole microbial cells in calcium alginate capsules. US patent 5,766,907, 16 Jun 1998Google Scholar
  19. Chen H, Ouyang W, Jones M, Metz T, Martoni C, Haque T, Cohen R, Lawuyi B, Prakash S (2007) Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem Biophys 47:159–167. doi: 10.1385/CBB:47:1:159 CrossRefGoogle Scholar
  20. Cheong SH, Park JK, Kim BS, Chang HN (1993) Microencapsulation of yeast cells in the calcium alginate membrane. Biotechnol Tech 7(12):879–884. doi: 10.1007/BF00156366 CrossRefGoogle Scholar
  21. Cheryan M, Mehaia MA (1983) A high-performance membrane bioreactor for continuous fermentation of lactose to ethanol. Biotechnol Lett 5(8):519–524. doi: 10.1007/bf01184942 CrossRefGoogle Scholar
  22. de Vos P, Bučko M, Gemeiner P, Navrátil M, Svitel J, Faas M, Strand BL, Skjak-Bræk G, Morch YA, Vikartovská A, Lacík I, Kolláriková G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570. doi: 10.1016/j.biomaterials.2009.01.014 CrossRefGoogle Scholar
  23. Dembczynski R, Jankowski T (2000) Characterisation of small molecules diffusion in hydrogel-membrane liquid-core capsules. Biochem Eng J 6(1):41–44. doi: 10.1016/S1369-703X(00)00070-X CrossRefGoogle Scholar
  24. Dembczynski R, Jankowski T (2002) Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzym Microb Tech 31:111–115. doi: 10.1016/S0141-0229(02)00080-7 CrossRefGoogle Scholar
  25. Galazzo JL, Bailey JE (1990) Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng 36:417–426. doi: 10.1002/bit.260360413 CrossRefGoogle Scholar
  26. Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192CrossRefGoogle Scholar
  27. Gåserød O, Smidsrød O, Skjåk-Bræk G (1998) Microcapsules of alginate–chitosan—I. A quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825. doi: 10.1016/S0142-9612(98)00073-8 CrossRefGoogle Scholar
  28. Gåserød O, Sannes A, Skjåk-Bræk G (1999) Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials 20:773–783. doi: 10.1016/S0142-9612(98)00230-0 CrossRefGoogle Scholar
  29. Ge XM, Zhang L, Bai FW (2006) Impacts of yeast floc size distributions on their observed rates for substrate uptake and product formation. Enzym Microb Tech 39:289–295. doi: 10.1016/j.enzmictec.2005.10.026 CrossRefGoogle Scholar
  30. Ghidoni I, Chlapanidas T, Bucco M, Crovato F, Marazzi M, Vigo D, Torre M, Faustini M (2008) Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine. Cytotechnology 58(1):49–56. doi: 10.1007/s10616-008-9161-0 CrossRefGoogle Scholar
  31. Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (part 1): sol–gel encapsulated biologicals. Trends Biotechnol 18(7):282–296. doi: 10.1016/S0167-7799(00)01457-8 CrossRefGoogle Scholar
  32. Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27(2):146–150. doi: 10.1002/bit.260270207 CrossRefGoogle Scholar
  33. Green KD, Gill IS, Khan JA, Vulfson EN (1996) Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents. Biotechnol Bioeng 49:535–543. doi: 10.1002/(SICI)1097-0290(19960305)49:5<535::AID-BIT6>3.0.CO;2-K CrossRefGoogle Scholar
  34. Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ (1993) Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnol Bioeng 42(10):1157–1163. doi: 10.1002/bit.260421005 CrossRefGoogle Scholar
  35. Hsu Y-L, Chu I-M (1992) Poly(ethylenimine)-reinforced liquid-core capsules for the cultivation of hybridoma cells. Biotechnol Bioeng 40(11):1300–1308. doi: 10.1002/bit.260401103 CrossRefGoogle Scholar
  36. Hucík M, Bučko M, Gemeiner P, Štefuca V, Vikartovská A, Mihovilovič M, Rudroff F, Iqbal N, Chorvát D, Lacík I (2010) Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnol Lett 32(5):675–680. doi: 10.1007/s10529-010-0203-2 CrossRefGoogle Scholar
  37. Hyndman CL, Groboillot AF, Poncelet D, Champagne CP, Neufeld RJ (1993) Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes. J Chem Technol Biotechnol 56(3):259–263. doi: 10.1002/jctb.280560307 CrossRefGoogle Scholar
  38. Jankowski T, Zielinska M, Wysakowska A (1997) Encapsulation of lactic acid bacteria with alginate/starch capsules. Biotechnol Tech 11(1):31–34. doi: 10.1007/BF02764447 CrossRefGoogle Scholar
  39. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103(3):643–653. doi: 10.1016/j.jconrel.2005.01.001 CrossRefGoogle Scholar
  40. Kim S-K, Yu S-H, Son J-H, Hübner H, Buchholz R (1998) Calculations on O2 transfer in capsules with animal cells for the determination of maximum capsule size without O2 limitation. Biotechnol Lett 20(6):549–552. doi: 10.1023/A:1005341526365 CrossRefGoogle Scholar
  41. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi: 10.1007/s00253-004-1642-2 CrossRefGoogle Scholar
  42. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13(1):3–13. doi: 10.1016/S0958-6946(02)00155-3 CrossRefGoogle Scholar
  43. Kubota M, Matsui M, Chiku H, Kasashima N, Shimojoh M, Sakaguchi K (2005) Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica. Appl Environ Microbiol 71(12):8895–8902. doi: 10.1128/aem.71.12.8895-8902.2005 CrossRefGoogle Scholar
  44. Kunioka M (1997) Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol 47:469–475. doi: 10.1007/s002530050958 CrossRefGoogle Scholar
  45. Kurayama F, Suzuki S, Oyamada T, Furusawa T, Sato M, Suzuki N (2010) Facile method for preparing organic/inorganic hybrid capsules using amino-functional silane coupling agent in aqueous media. J Colloid Interf Sci 349(1):70–76. doi: 10.1016/j.jcis.2010.05.039 CrossRefGoogle Scholar
  46. Larisch BC (1990) Microencapsulation of Lactococcus lactis subsp. cremoris for application in the dairy industry. MSc thesis, McGill University, MontrealGoogle Scholar
  47. Larisch BC, Poncelet D, Champagne CP, Neufeld RJ (1994) Microencapsulation of Lactococcus lactis subsp. cremoris. J Microencapsul 11(2):189–195. doi: 10.3109/02652049409040450 CrossRefGoogle Scholar
  48. Lee BH, Park JK (1996) Encapsulation of whole cell β-galactosidase of Escherichia coli. Korean J Biotechnol Bioeng 11:398–404Google Scholar
  49. Leveque I, Rhodes KH, Mann S (2002) Biomineral-inspired fabrication of semi-permeable calcium phosphate–polysaccharide microcapsules. J Mater Chem 12(8):2178–2180. doi: 10.1039/B204599K CrossRefGoogle Scholar
  50. Lin J, Yu W, Liu X, Xie H, Wang W, Ma X (2008) In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J Biosci Bioeng 105(6):660–665. doi: 10.1263/jbb.105.660 CrossRefGoogle Scholar
  51. Liouni M, Drichoutis P, Nerantzis ET (2008) Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J Microbiol Biotechnol 24:281–288. doi: 10.1007/s11274-007-9467-7 CrossRefGoogle Scholar
  52. Lu Y, Mei L (2007) Production of indigo by immobilization of E. coli BL21 (DE3) cells in calcium-alginate gel capsules. Chin J Chem Eng 15(3):387–390. doi: 10.1016/S1004-9541(07)60096-2 CrossRefGoogle Scholar
  53. Ma J, Qi WT, Yang LN, Yu WT, Xie YB, Wang W, Ma XJ, Xu F, Sun LX (2007) Microcalorimetric study on the growth and metabolism of microencapsulated microbial cell culture. J Microbiol Meth 68:172–177. doi: 10.1016/j.mimet.2006.07.007 CrossRefGoogle Scholar
  54. Mei L-H, Yao S-J (2002) Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. J Microencapsul 19(4):397–405. doi: 10.1080/02652040210141101 CrossRefGoogle Scholar
  55. Mogensen AO, Vieth WR (1973) Mass transfer and biochemical reaction with semipermeable microcapsules. Biotechnol Bioeng 15:467–481. doi: 10.1002/bit.260150304 CrossRefGoogle Scholar
  56. Murua A, Portero A, Orive G, Hernández RM, Md C, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83. doi: 10.1016/j.jconrel.2008.08.010 CrossRefGoogle Scholar
  57. Nigam SC, Tsao I-F, Sakoda A, Wang HY (1988) Techniques for preparing hydrogel membrane capsules. Biotechnol Lett 2(4):271–276. doi: 10.1007/BF01875541 Google Scholar
  58. Norton S, Watson K, D’Amore T (1995) Ethanol tolerance of immobilized brewers’ yeast cells. Appl Microbiol Biotechnol 43(1):18–24. doi: 10.1007/BF00170616 CrossRefGoogle Scholar
  59. Oh CY, Park JK (1998) The characteristics of encapsulated whole cell β-galactosidase. Bioprocess Eng 19:419–425. doi: 10.1007/PL00009027 CrossRefGoogle Scholar
  60. Orive G, Gascón AR, Hernández RM, Igartua M, Pedraz JL (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24(5):207–210. doi: 10.1016/S0165-6147(03)00073-7 CrossRefGoogle Scholar
  61. Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TMS, Pd V, Hortelano G, Hunkeler D, Lacík I, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87–92. doi: 10.1016/j.tibtech.2003.11.004 CrossRefGoogle Scholar
  62. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319CrossRefGoogle Scholar
  63. Park JK, Jung JY (2002) Production of benzaldehyde by encapsulated whole-cell benzoylformate decarboxylase. Enzym Microb Tech 30(6):726–733CrossRefGoogle Scholar
  64. Park JK, Lee KD (2001) Production of l-phenylacetylcarbinol (l-PAC) by encapsulated Saccharomyces cerevisiae cells. Korean J Chem Eng 18(3):363–370. doi: 10.1007/bf02699179 CrossRefGoogle Scholar
  65. Park JK, Jeong GS, Chang HN (1997a) The effect of oxygen transfer on the activity of encapsulated whole cell ß-galactosidase. Bioproc Biosyst Eng 17(4):197–202. doi: 10.1007/pl00008964 Google Scholar
  66. Park JK, Jin YB, Park HW (1997b) The recovery of heavy metals using encapsulated microbial cells. Biotechnol Bioprocess Eng 2:132–135CrossRefGoogle Scholar
  67. Park JK, Park HW, Lee YH (2000) Production of glucosyl–xylitol using encapsulated whole cell CGTase. Korean J Biotechnol Bioeng 15(1):35–41Google Scholar
  68. Park J-K, Sohn J-H, Park H-W, Lee Y-H (2001) Encapsulation of whole cell CGTase from concentrated broth solution. Biotechnol Bioprocess Eng 6(1):67–71. doi: 10.1007/BF02942253 CrossRefGoogle Scholar
  69. Pourbafrani M, Talebnia F, Niklasson C, Taherzadeh MJ (2007) Protective effect of encapsulation in fermentation of limonene-contained media and orange peel hydrolyzate. Int J Mol Sci 8:777–787CrossRefGoogle Scholar
  70. Prokop A, Hunkeler D, Powers AC, Whitesell RR, Wang TG (1998) Water soluble polymers for immunoisolation II: evaluation of multicomponent microencapsulation systems. Advances in Polymer Science 136:53–73. doi: 10.1007/3-540-69682-2_2 Google Scholar
  71. Purwadi R, Brandberg T, Taherzadeh MJ (2007) A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol: continuous cultivation with flocculating yeast. Int J Mol Sci 8:920–932. doi: 10.3390/i8090920 CrossRefGoogle Scholar
  72. Qi W-t, Yu W-t, Xie Y-b, Ma X (2005) Optimization of Saccharomyces cerevisiae culture in alginate–chitosan–alginate microcapsule. Biochem Eng J 25:151–157. doi: 10.1016/j.bej.2005.04.019 CrossRefGoogle Scholar
  73. Riley M, Muzzio F, Reyes S (1999) Experimental and modeling studies of diffusion in immobilized cell systems. Appl Biochem Biotechnol 80(2):151–188. doi: 10.1385/ABAB:80:2:151 CrossRefGoogle Scholar
  74. Sakai S, Ono T, Ijima H, Kawakami K (2002) Aminopropyl-silicate membrane for microcapsule-shaped bioartificial organs: control of molecular permeability. J Membr Sci 202(1–2):73–80. doi: 10.1016/S0376-7388(01)00731-1 CrossRefGoogle Scholar
  75. Sakai S, Hashimoto I, Kawakami K (2008) Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules. Biotechnol Bioeng 99(1):235–243. doi: 10.1002/bit.21624 CrossRefGoogle Scholar
  76. Schenkmayerová A, Bučko M, Gemeiner P, Chorvát D, Lacík I (2012) Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer–Villiger biooxidation by confocal laser scanning microscopy. Biotechnol Lett 34(2):309–314. doi: 10.1007/s10529-011-0765-7 CrossRefGoogle Scholar
  77. Seong G-H, Han SJ, Chang H-N, Lee J (1997) Whole cell enzyme microencapsulation of Escherichia coli with oxygendependent inducible nar promoter. Biotechnol Lett 19(9):881–884. doi: 10.1023/A:1018341705134 CrossRefGoogle Scholar
  78. Serp D, Cantana E, Heinzen C, von Stockar U, Marison IW (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 70(1):41–53. doi: 10.1002/1097-0290(20001005)70:1<41::AID-BIT6>3.0.CO;2-U CrossRefGoogle Scholar
  79. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307. doi: 10.1002/adsc.200700082 CrossRefGoogle Scholar
  80. Shigeri Y, Koishi M, Kondo T, Shiba M, Tomioka S (1970) Studies on microcapsules. VI. Effect of variations in polymerization condition on microcapsule size. Can J Chem 48(13):2047–2051. doi: 10.1139/v70-341 CrossRefGoogle Scholar
  81. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491. doi: 10.1128/jb.185.5.1485-1491.2003 CrossRefGoogle Scholar
  82. Strøm AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8(2):205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x CrossRefGoogle Scholar
  83. Sun Z-J, Lv G-J, Li S-Y, Xie Y-B, Yu W-T, Wang W, Ma X-J (2007a) Probing the role of microenvironment for microencapsulated Sacchromyces cerevisiae under osmotic stress. J Biotechnol 128:150–161. doi: 10.1016/j.jbiotec.2006.09.001 CrossRefGoogle Scholar
  84. Sun Z-J, G-j L, Li S-y Y, W-t WW, Y-b X, Ma X (2007b) Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. Appl Microbiol Biotechnol 75:1419–1427. doi: 10.1007/s00253-007-0960-6 CrossRefGoogle Scholar
  85. Sun Z-J, Li S-Y, Lv G-J, Zhu J, W-t Y, Wang W, Xie Y-B (2008) Metabolic response of different osmo-sensitive Sacchromyces cerevisiae to ACA microcapsule. Enzym Microb Tech 42:576–582. doi: 10.1016/j.enzmictec.2008.01.021 CrossRefGoogle Scholar
  86. Taherzadeh MJ, Millati R, Niklasson C (2001) Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Appl Biochem Biotechnol 95:45–57. doi: 10.1385/ABAB:95:1:45 CrossRefGoogle Scholar
  87. Talebnia F, Taherzadeh MJ (2006) In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. J Biotechnol 125:377–384. doi: 10.1016/j.jbiotec.2006.03.013 CrossRefGoogle Scholar
  88. Talebnia F, Taherzadeh MJ (2007) Physiological and morphological study of encapsulated Saccharomyces cerevisiae. Enzym Microb Tech 41:683–688. doi: 10.1016/j.enzmictec.2007.05.020 CrossRefGoogle Scholar
  89. Talebnia F, Niklasson C, Taherzadeh MJ (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol Bioeng 90(3):345–353. doi: 10.1002/bit.20432 CrossRefGoogle Scholar
  90. Teixeira JA, Mota M (1990) Experimental assessment of internal diffusion limitations in yeast flocs. Chem Eng J 43(1):B13–B17. doi: 10.1016/0300-9467(90)80047-G CrossRefGoogle Scholar
  91. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64. doi: 10.1016/S0169-409X(00)00053-3 CrossRefGoogle Scholar
  92. Vicente AA, Dluhý M, Ferreira EC, Mota M, Teixeira JA (1998) Mass transfer properties of glucose and O2 in Saccharomyces cerevisiae flocs. Biochem Eng J 2:35–43CrossRefGoogle Scholar
  93. Voit EO (2003) Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 223(1):55–78CrossRefGoogle Scholar
  94. Wang FF, Wu CR, Wang YJ (1992) Preparation and application of poly(vinylamine)/alginate microcapsules to culturing of a mouse erythroleukemia cell line. Biotechnol Bioeng 40(9):1115–1118. doi: 10.1002/bit.260400916 CrossRefGoogle Scholar
  95. Westman JO, Manikondu RB, Franzén CJ, Taherzadeh MJ (2012a) Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible lignocellulose derived inhibitors. Int J Mol Sci 13(9):11881–11894. doi: 10.3390/ijms130911881 CrossRefGoogle Scholar
  96. Westman JO, Taherzadeh MJ, Franzén CJ (2012b) Proteomic analysis of the increased stress tolerance of Saccharomyces cerevisiae encapsulated in liquid core alginate–chitosan capsules. PLoS ONE (in press)Google Scholar
  97. Xu L (2012) Bio-fuel production by using integrated anaerobic fermentation. PhD thesis, University of Minnesota, MinneapolisGoogle Scholar
  98. Ylitervo P, Franzén CJ, Taherzadeh MJ (2011) Ethanol production at elevated temperatures using encapsulation of yeast. J Biotechnol 156(1):22–29. doi: 10.1016/j.jbiotec.2011.07.018 CrossRefGoogle Scholar
  99. Ylitervo P, Franzén CJ, Taherzadeh MJ (2012) Mechanically robust polysiloxane–ACA capsules for prolonged ethanol production. J Chem Technol Biotechnol. doi: 10.1002/jctb.3944
  100. Yoo I-K, Seong GH, Chang HN, Park JK (1996) Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzym Microb Tech 19(6):428–433. doi: 10.1016/S0141-0229(96)00016-6 CrossRefGoogle Scholar
  101. Yoshioka T, Hirano R, Shioya T, Kako M (1990) Encapsulation of mammalian cell with chitosan–CMC capsule. Biotechnol Bioeng 35(1):66–72. doi: 10.1002/bit.260350110 CrossRefGoogle Scholar
  102. Young T-H, Yao N-K, Chang R-F, Chen L-W (1996) Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets. Biomaterials 17(22):2139–2145. doi: 10.1016/0142-9612(96)00043-9 CrossRefGoogle Scholar
  103. Youngsukkasem S, Rakshit SK, Taherzadeh MJ (2012) Biogas production by encapsulated methane-producing bacteria. BioResources 7(1):56–65Google Scholar
  104. Zhao Y-N, Chen G, Yao S-J (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32(2):93–99. doi: 10.1016/j.bej.2006.09.007 CrossRefGoogle Scholar
  105. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957. doi: 10.1021/cr068035q CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johan O. Westman
    • 1
    • 2
  • Päivi Ylitervo
    • 1
    • 2
  • Carl Johan Franzén
    • 2
  • Mohammad J. Taherzadeh
    • 1
    Email author
  1. 1.School of EngineeringUniversity of BoråsBoråsSweden
  2. 2.Chemical and Biological Engineering—Industrial BiotechnologyChalmers University of TechnologyGothenburgSweden

Personalised recommendations