Skip to main content

Advertisement

Log in

Microbial degradation of chloroform

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chloroform (CF) is largely produced by both anthropogenic and natural sources. It is detected in ground and surface water sources and it represents the most abundant halocarbon in the atmosphere. Microbial CF degradation occurs under both aerobic and anaerobic conditions. Apart from a few reports describing the utilization of CF as a terminal electron acceptor during growth, CF degradation was mainly reported as a cometabolic process. CF aerobic cometabolism is supported by growth on short-chain alkanes (i.e., methane, propane, butane, and hexane), aromatic hydrocarbons (i.e., toluene and phenol), and ammonia via the activity of monooxygenases (MOs) operatively divided into different families. The main factors affecting CF cometabolism are (1) the inhibition of CF degradation exerted by the growth substrate, (2) the need for reductant supply to maintain MO activity, and (3) the toxicity of CF degradation products. Under anaerobic conditions, CF degradation was mainly associated to the activity of methanogens, although some examples of CF-degrading sulfate-reducing, fermenting, and acetogenic bacteria are reported in the literature. Higher CF toxicity levels and lower degradation rates were shown by anaerobic systems in comparison to the aerobic ones. Applied physiological and genetic aspects of microbial cometabolism of CF will be presented along with bioremediation perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high rate, tetrachloroethene-dechlorinating enrichment culture. Environ Sci Technol 34:1959–1965

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2011) CERCLA priority list of hazardous substances. URL http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=53&tid=16

  • Alvarez-Cohen L, McCarty PL (1991a) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991b) A cometabolic biotransformation model for halogenated aliphatic-compounds exhibiting product toxicity. Environ Sci Technol 25:1381–1387

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL, Boulygina E, Hanson RS, Brusseau GA, Tsien HC (1992) Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl Environ Microbiol 58:1886–1893

    CAS  Google Scholar 

  • Alvarez-Cohen L, Speitel G (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126

    Article  CAS  Google Scholar 

  • Ames GFL, Prody C, Kustu S (1984) Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183

    CAS  Google Scholar 

  • Arp D (1995) Understanding the diversity of trichloroethene cooxidations. Curr Opin Biotechnol 6:352–358

    Article  CAS  Google Scholar 

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81–103

    Article  CAS  Google Scholar 

  • Aziz C, Georgiou G, Speitel G (1999) Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PP358. Biotechnol Bioeng 65:100–107

    Article  CAS  Google Scholar 

  • Bagley D, Lalonde M, Kaseros V, Stasiuk K, Sleep B (2000) Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Res 34:171–178

    Article  CAS  Google Scholar 

  • Bagley DM, Gossett JM (1995) Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227. Appl Environ Microbiol 61:3195–3201

    CAS  Google Scholar 

  • Balasubramanian P, Philip L, Murty BS (2010) Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. Appl Biochem Biotechnol 163:497–518

    Article  CAS  Google Scholar 

  • Bartnicki EW, Castro CE (1994) Biodehalogenation: rapid oxidative metabolism of mono- and polyhalomethanes by Methylosinus trichosporium OB3b. Environ Toxicol Chem 13:241–245

    CAS  Google Scholar 

  • Bauchop T (1967) Inhibition of rumen methanogenesis by methane analogues. J Bacteriol 94:171–175

    CAS  Google Scholar 

  • Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environ Sci Technol 28:1942–1949

    Article  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • Bouwer EJ, McCarty PL (1983a) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45:1286–1294

    CAS  Google Scholar 

  • Bouwer EJ, McCarty PL (1983b) Transformations of halogenated organic compounds under denitrification conditions. Appl Environ Microbiol 45:1295–1299

    CAS  Google Scholar 

  • Budavari S, ed (2001) The Merck index, 13th ed. Whitehouse Station, NJ, Merck & Co, p 2162

  • Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:3327–3333

    CAS  Google Scholar 

  • Cappelletti M, Fedi S, Frascari D, Ohtake H, Turner RJ, Zannoni D (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627

    Article  CAS  Google Scholar 

  • Cardy DL, Laidler V, Salmond GP, Murrell JC (1991a) Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol 5:335–342

    Article  CAS  Google Scholar 

  • Cardy DL, Laidler V, Salmond GP, Murrell JC (1991b) The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Arch Microbiol 156:477–483

    CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol Bioeng 45:440–449

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl Environ Microbiol 62:3371–3377

    CAS  Google Scholar 

  • Chauhan S, Barbieri P, Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64:3023–3024

    CAS  Google Scholar 

  • Christopher JP, Young RJ, Perry R (1980) Factors influencing the formation of haloforms in the chlorination of humic materials. Environ Sci Technol 14:1391–1395

    Article  Google Scholar 

  • Ciavarelli R, Cappelletti M, Fedi S, Pinelli D, Frascari D (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors. Bioproc Biosyst Eng 35:667–681

    Article  CAS  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    CAS  Google Scholar 

  • Davis JB (1964) Cellular lipids of a Nocardia grown on propane and butane. Appl Microbiol 12:301–304

    CAS  Google Scholar 

  • DeShon HD (1979) Chloroform. In: Kirk-Othmer encyclopedia of chemical technology, Third edition, vol. 5, Castor oil to chlorosulfuric acid. Wiley, New York, pp 693–703

    Google Scholar 

  • Dey K, Roy P (2011) Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads. Biotechnol Lett 33:1101–1105

    Article  CAS  Google Scholar 

  • Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464

    CAS  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202

    Article  CAS  Google Scholar 

  • Dybas MJ, Tatara GM, Criddle CS (1995) Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl Environ Microbiol 61:758–762

    CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54:2819–2824

    CAS  Google Scholar 

  • Egli C, Stromeyer SA, Cook AM, Leisinger T (1990) Transformation of tetrachloromethane and chloroform to CO2 by anaerobic bacteria is a non-enzymatic process. FEMS Microbiol Lett 68:207–212

    Article  CAS  Google Scholar 

  • Ely R, Hyman M, Arp D, Guenther R, Williamson K (1995) A cometabolic kinetics model incorporating enzyme-inhibition, inactivation, and recovery. II. Trichloroethylene degradation experiments. Biotechnol Bioeng 46:232–245

    Article  CAS  Google Scholar 

  • Ely R, Williamson K, Hyman M, Arp D (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 54:520–534

    Article  CAS  Google Scholar 

  • Environment Canada, Health Canada (2001) Priority substances list assessment report. Chloroform. ISBN 0-662-29247-2

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3:185–254

    Article  CAS  Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications. Biochem 29:6419–6427

    Article  CAS  Google Scholar 

  • Frascari D, Kim Y, Dolan ME, Semprini L (2003) A kinetic study of aerobic propane uptake and cometabolic degradation of chloroform, cis-dichloroethylene and trichloroetylene in microcosms with groundwater/aquifer solids. Water Air Soil Pollut 3:285–298

    Article  CAS  Google Scholar 

  • Frascari D, Zannoni A, Fedi S, Pii Y, Zannoni D, Pinelli D, Nocentini M (2005) Aerobic cometabolism of chloroform by butane-grown microorganisms: long-term monitoring of depletion rates and isolation of a high-performing strain. Biodegradation 16:147–158

    Article  Google Scholar 

  • Frascari D, Pinelli D, Nocentini M, Fedi S, Pii Y, Zannoni D (2006) Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl Microbiol Biotechnol 73:421–428

    Article  CAS  Google Scholar 

  • Frascari D, Zannoni A, Pinelli D, Nocentini M (2007) Chloroform aerobic cometabolism by butane-utilizing bacteria in bioaugmented and non-bioaugmented soil/groundwater microcosms. Process Biochem 42:1218–1228

    Google Scholar 

  • Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp PB1. Biochem Eng J 42:139–147

    Article  CAS  Google Scholar 

  • Frascari D, Cappelletti M, Fedi S, Verboschi A, Ciavarelli R, Nocentini M, Pinelli D (2011) Application of the growth substrate pulsed feeding technique to a process of chloroform aerobic cometabolism in a continuous-flow sand-filled reactor. Process Biochem (in press)

  • Freedman DL, Lasecki M, Hashsham S, Scholze R (1995) Accelerated biotransformation of carbon tetrachloride and chloroform by sulfate-reducing enrichment cultures. In: Hinchee RE, Leeson A, Semprini L (eds) Bioremediation of chlorinated solvents, vol 4. Battelle Press, Columbus, pp 123–138

    Google Scholar 

  • Gälli R, McCarty PL (1989) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl Environ Microbiol 55:837–844

    Google Scholar 

  • Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722

    Article  CAS  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12:1053–1060

    Article  CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005) Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89:539–550

    Article  CAS  Google Scholar 

  • Gupta M, Gupta A, Suidan M, Sayles G (1996a) Biotransformation rates of chloroform under anaerobic conditions. 2. Sulfate reduction. Water Res 30:1387–1394

    Article  CAS  Google Scholar 

  • Gupta M, Sharma D, Suidan M, Sayles G (1996b) Biotransformation rates of chloroform under anaerobic conditions. 1. Methanogenesis. Water Res 30:1377–1385

    Article  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  Google Scholar 

  • Hamamura N, Page C, Long T, Semprini L, Arp D (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613

    CAS  Google Scholar 

  • Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67:4992–4998

    Article  CAS  Google Scholar 

  • Han JI, Lontoh S, Semrau JD (1999) Degradation of chlorinated and brominated hydrocarbons by Methylomicrobium album BG8. Arch Microbiol 172:393–400

    Article  CAS  Google Scholar 

  • Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17:337–348

    Article  CAS  Google Scholar 

  • Hartmans S, de Bont JAM, Tramper J, Luyben KCAM (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7:383–388

    Article  CAS  Google Scholar 

  • Hashsham S, Freedman D (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65:4537–4542

    CAS  Google Scholar 

  • Henrysson T, McCarty PL (1993) Influence of the endogenous storage lipid poly-β-hydroxybutyrate on the reducing power availability during cometabolism of trichloroethylene and naphthalene by resting methanotrophic mixed cultures. Appl Environ Microbiol 59:1602–1606

    CAS  Google Scholar 

  • Henson J, Yates M, Cochran J, Shackleford D (1988) Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane. FEMS Microbiol Ecol 53:193–201

    Article  CAS  Google Scholar 

  • Hoekstra EJ, Verhagen FJM, Field JA, de Leer EWB, Brinkman UAT (1998) Natural production of chloroform by fungi. Phytochemistry 49:91–97

    Article  CAS  Google Scholar 

  • Horvath RS (1972) Microbial cometabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    CAS  Google Scholar 

  • Hughes J, Parkin G (1996) Individual biotransformation rates in chlorinated aliphatic mixtures. J Environ Eng 122:99–106

    Article  CAS  Google Scholar 

  • van Hylckama Vlieg JE, de Koning W, Janssen DB (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl Environ Microbiol 62:3304–3312

    Google Scholar 

  • International Agency for Research on Cancer (IARC) (1999) Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 73. IARC, Lyon

    Google Scholar 

  • Jahng D, Wood T (1994) Trichloroethylene and chloroform degradation by a recombinant Pseudomonas expressing soluble methane monoxygenase from Methylosinus trichosporium OB3B. Appl Environ Microbiol 60:2473–2482

    CAS  Google Scholar 

  • Keener WK, Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Appl Environ Microbiol 59:2501–2510

    CAS  Google Scholar 

  • Kim Y, Semprini L, Arp DJ (1997) Aerobic cometabolism of chloroform and 1,1,1-trichloroethane by butane-grown microorganisms. Biorem Journal 1:135–148

    Article  CAS  Google Scholar 

  • Kim Y, Arp DJ, Semprini L (2000) Chlorinated solvent cometabolism by butane-grown mixed culture. J Environ Eng 126:934–942

    Article  CAS  Google Scholar 

  • Klecka G, Gonsior S (1984) Reductive dechlorination of chlorinated methanes and ethanes by reduced iron (II) porphyrins. Chemosphere 13:391–402

    Article  CAS  Google Scholar 

  • Klotz MG, Norton JM (1998) Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett 168:303–311

    Article  CAS  Google Scholar 

  • Kohler-Staub D, Frank S, Leisinger T (1995) Dichloromethane as the sole carbon source for Hyphomicrobium sp. strain DM2 under denitrification conditions. Biodegradation 6:229–235

    Article  CAS  Google Scholar 

  • Koons BW, Baeseman JL, Novak PJ (2001) Investigation of cell exudates active in carbon tetrachloride and chloroform degradation. Biotechnol Bioeng 74:12–17

    Article  CAS  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakia Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC (1989a) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914

    Article  CAS  Google Scholar 

  • Krone UE, Laufer K, Thauer RK, Hogenkamp HP (1989b) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065

    Article  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC, Steinbach K (1991) Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30:2713–2719

    Google Scholar 

  • Lackey LW, Phelps TJ, Bienkowski PR, White DC (1993) Biodegradation of chlorinated aliphatic hydrocarbon mixtures in a single-pass packed-bed reactor. Appl Biochem Biotechnol 39(40):701–713

    Article  Google Scholar 

  • Laturnus F, Haselmann KF, Borch T, Gron C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl3)—an overview. Biogeochem 60:121–139

    Article  CAS  Google Scholar 

  • Leahy JG, Tracy KD, Eley MH (2003) Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria. Biotechnol Lett 25:479–483

    Article  CAS  Google Scholar 

  • Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14:883–894

    Article  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164

    Article  CAS  Google Scholar 

  • Liu H, Wang J, Wang A, Chen J (2010) Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 89:1333–1340

    Article  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  Google Scholar 

  • Löffler C, Eberlein C, Mäusezahl I, Kappelmeyer U, Heipieper HJ (2010) Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 308:68–75

    Article  CAS  Google Scholar 

  • Long J, Stensel H, Ferguson J, Strand S, Ongerth J (1993) Anaerobic and aerobic treatment of chlorinated aliphatic compounds. J Environ Eng 119:300–320

    Article  CAS  Google Scholar 

  • Mabey W, Mill T (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem Ref Data 7:383–415

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY (1981) A critical review of Henry's law constants for chemicals of environmental interest. Phys Chem Ref Data 10:1175–1199

    Article  CAS  Google Scholar 

  • Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species. Appl Environ Microbiol 60:542–548

    CAS  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475

    CAS  Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521

    Article  CAS  Google Scholar 

  • McCarty PL (1988) Bioengineering issues related to in-situ remediation of contaminated soils and groundwater. In: Omenn GS (ed) Environmental biotechnology: reducing risks from environmental chemicals through biotechnology. Plenum, New York

    Google Scholar 

  • McClay K, Fox B, Steffan R (1996) Chloroform mineralization by toluene-oxidizing bacteria. Appl Environ Microbiol 62:2716–2722

    CAS  Google Scholar 

  • McCulloch A (2003) Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 50:1291–1308

    Article  CAS  Google Scholar 

  • Mikesell M, Boyd S (1990) Dechlorination of chloroform by Methanosarcina strains. Appl Environ Microbiol 56:1198–1201

    CAS  Google Scholar 

  • Newman LM, Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34:14066–14076

    Article  CAS  Google Scholar 

  • Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149

    Article  CAS  Google Scholar 

  • Novak PJ, Daniels L, Parkin GF (1998) Rapid dechlorination of carbon tetrachloride and chloroform by extracellular agents in cultures of Methanosarcina thermophila. Environ Sci Technol 32:3132–3136

    Article  CAS  Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826

    CAS  Google Scholar 

  • Olivas Y, Dolfing J, Smith GB (2002) The influence of redox potential on the degradation of halogenated methanes. Environ Toxicol Chem 21:493–499

    Article  CAS  Google Scholar 

  • Patel RN, Hou CT, Laskin AI, Felix A (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl Environ Microbiol 44:1130–1137

    CAS  Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol Rev 43:59–72

    CAS  Google Scholar 

  • Pikus JD, Studts JM, Achim C, Kauffmann KE, Munck E, Steffan RJ, McClay K, Fox BG (1996) Recombinant toluene-4-monooxygenase: catalytic and Mossbauer studies of the purified diiron and Rieske components of a four-protein complex. Biochemistry 35:9106–9119

    Article  CAS  Google Scholar 

  • Pohl LR, Bhooshan B, Whittaker NF, Krishna G (1977) Phosgene: a metabolite of chloroform. Biochem Bioph Res Co 79:684–691

    Article  CAS  Google Scholar 

  • Rasche M, Hyman M, Arp D (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea—cometabolic inactivation of ammonia monooxygenase and substrate-specificity. Appl Environ Microbiol 57:2986–2994

    CAS  Google Scholar 

  • Rhee E, Speece RE (1992) Maximal biodegradation rates of chloroform and trichloroethylene in anaerobic treatment. Water Sci Technol 25:121–130

    CAS  Google Scholar 

  • Roberts PV, Hopkins GD, Mackay DM, Semprini L (1990) A field evaluation of in situ biodegradation of chlorinated ethenes: part 1, methodology and field site characterization. Ground Water 28:591–604

    Article  CAS  Google Scholar 

  • Rosenthal SL (1987) A review of the mutagenicity of chloroform. Environ Mol Mutagen 10:211–226

    Article  CAS  Google Scholar 

  • Sayavedra-Soto LA, Hamamura N, Liu C-W, Kimbrel JA, Chang JH, Arp DJ (2011) The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Reports 3:390–396

    Article  CAS  Google Scholar 

  • Scholten J, Conrad R, Stams A (2000) Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiol Ecol 32:35–42

    Article  CAS  Google Scholar 

  • Segar RL Jr. (1994) Endogenous cometabolism of chlorinated ethenes by biofilms grown on phenol. Ph.D. Dissertation. University of Texas at Austin

  • Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 77:3071–3079

    Google Scholar 

  • Shah NN, Hanna ML, Taylor RT (1996) Batch cultivation of Methylosinus trichosporium OB3b: characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng 49:161–171

    Article  CAS  Google Scholar 

  • Shan H, Kurtz HD, Mykytczuk N, Trevors JT, Freedman DL (2010) Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates. Appl Environ Microbiol 76:6463–6469

    Article  CAS  Google Scholar 

  • Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938

    Article  CAS  Google Scholar 

  • Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from Pseudomonas butanovora. Microbiol-UK 148:3617–3629

    CAS  Google Scholar 

  • Speitel G, Leonard J (1992) A sequencing biofilm reactor for the treatment of chlorinated solvents using methanotrophs. Water Environ Res 64:712–719

    Article  CAS  Google Scholar 

  • Speitel G, Thompson R, Weissman D (1993) Biodegradation kinetics of Methylosinus trichosporium OB3b at low concentrations of chloroform in the presence and absence of enzyme competition by methane. Water Res 27:15–24

    Article  CAS  Google Scholar 

  • Stainthorpe AC, Lees V, Salmond GP, Dalton H, Murrell JC (1990) The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91:27–34

    Article  CAS  Google Scholar 

  • Strand SE, Shippert L (1986) Oxidation of chloroform in an aerobic soil exposed to natural gas. Appl Environ Microbiol 52:203–205

    CAS  Google Scholar 

  • Stromeyer SA, Stumpf K, Cook AM, Leisinger T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles of vitamin B12 and other factors. Biodegradation 3:113–123

    Article  CAS  Google Scholar 

  • Subramanian V, Liu T-N, Yeh WK, Serdar CM, Wackett LP, Gibson DT (1985) Purification and properties of ferredoxinTOL: a component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem 260:2355–2363

    CAS  Google Scholar 

  • Swanwick JD, Foulkes M (1971) Inhibition of anaerobic digestion of sewage sludge by chlorinated hydrocarbons. Water Pollut Contr 70:58–70

    Google Scholar 

  • Thompson RC (1990) Aerobic biodegradation of chloroform by mixed and pure cultures of methanotrophs in batch and continuous-flow experiments. M.S. thesis, University of Texas at Austin

  • Tovanabootr A, Semprini L (1998) Comparison of TCE transformation abilities of methane- and propane-utilizing microorganisms. Biorem J 2:105–124

    Article  CAS  Google Scholar 

  • US EPA (2001) Toxicological review of chloroform in support of summary information on IRIS. Washington, DC. EPA 635-R-01-001

  • US EPA (2003) National primary drinking water standards. Washington, DC. EPA 816-F-03-016

  • Vannelli T, Logan M, Arciero D, Hooper A (1990) Degradation of halogenated aliphatic-compounds by the ammonia-oxidizing bacterium Nitrosomonas europeae. Appl Environ Microbiol 56:1169–1171

    CAS  Google Scholar 

  • Vannelli T, Studer A, Kertesz M, Leisinger T (1998) Chloromethane metabolism by Methylobacterium sp. strain CM4. Appl Environ Microbiol 64:1933–1936

    CAS  Google Scholar 

  • Wahman DG, Katz LE, Speitel GE (2005) Cometabolism of trihalomethanes by Nitrosomonas europaea. Appl Environ Microbiol 71:7980–7986

    Article  CAS  Google Scholar 

  • Wahman DG, Henry AE, Katz LE, Speitel GE (2006) Cometabolism of trihalomethanes by mixed culture nitrifiers. Water Res 40:3349–3358

    Article  CAS  Google Scholar 

  • Wahman DG, Katz LE, Speitel GE (2007) Modeling of trihalomethane cometabolism in nitrifying biofilters. Water Res 41:449–457

    Article  CAS  Google Scholar 

  • Wahman DG, Katz LE, Speitel GE (2011a) Performance and biofilm activity of nitrifying biofilters removing trihalomethanes. Water Res 45:1669–1680

    Article  CAS  Google Scholar 

  • Wahman DG, Kirisits MJ, Katz LE, Speitel GE (2011b) Ammonia-oxidizing bacteria in biofilters removing trihalomethanes are related to Nitrosomonas oligotropha. Appl Environ Microbiol 77:2537–2540

    Article  CAS  Google Scholar 

  • Weathers L, Parkin G (2000) Toxicity of chloroform biotransformation to methanogenic bacteria. Environ Sci Technol 34:2764–2767

    Article  CAS  Google Scholar 

  • Wendlandt K-D, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10:87–102

    CAS  Google Scholar 

  • Yu Z, Smith GB (1997) Chloroform dechlorination by a wastewater methanogenic consortium and cell extracts of Methanosarcina barkeri. Water Res 31:1879–1886

    Article  CAS  Google Scholar 

  • Yu Z, Smith GB (2000) Inhibition of methanogenesis by C-1- and C-2-polychlorinated aliphatic hydrocarbons. Environ Tox Chem 19:2212–2217

    CAS  Google Scholar 

  • Zhao T, Zhang L, Chen H, Zhao Y (2009) Co-inhibition of methanogens for methane mitigation in biodegradable wastes. J Environ Sci 21:827–833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.C. was funded by PRIN 2008 (P7K379_002) from the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelletti, M., Frascari, D., Zannoni, D. et al. Microbial degradation of chloroform. Appl Microbiol Biotechnol 96, 1395–1409 (2012). https://doi.org/10.1007/s00253-012-4494-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4494-1

Keywords

Navigation