Applied Microbiology and Biotechnology

, Volume 96, Issue 5, pp 1301–1312 | Cite as

Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach

  • G. Jerre van Veluw
  • Marloes L. C. Petrus
  • Jacob Gubbens
  • Richard de Graaf
  • Inez P. de Jong
  • Gilles P. van Wezel
  • Han A. B. Wösten
  • Dennis Claessen
Genomics, transcriptomics, proteomics

Abstract

Streptomycetes are proficient producers of enzymes and antibiotics. When grown in bioreactors, these filamentous microorganisms form mycelial pellets that consist of interconnected hyphae. We here employed a flow cytometry approach designed for large particles (COPAS) and demonstrate that liquid-grown Streptomyces cultures consist of two distinct populations of pellets. One population consists of mycelia with a constant mean diameter of approximately 260 μm, whereas the other population contains larger mycelia whose diameter depends on the strain, the age of the culture, and medium composition. Quantitative proteomics analysis revealed that 37 proteins differed in abundance between the two populations of pellets. Stress-related proteins and biosynthetic proteins for production of the calcium-dependent antibiotic were more abundant in the population of large mycelia, while proteins involved in DNA topology, modification, or degradation were overrepresented in the population of small mycelia. Deletion of genes for the cellulose synthase-like protein CslA and the chaplins affected the average size of the population of large pellets but not that of small pellets. Considering the fact that the production of enzymes and metabolites depends on pellet size, these results provide new leads toward rational strain design of Streptomyces strains tailored for industrial fermentations.

Keywords

Heterogeneity Fermentation COPAS Cell wall Proteomics 

Supplementary material

253_2012_4490_MOESM1_ESM.pdf (187 kb)
ESM 1(PDF 187 kb)

References

  1. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147CrossRefGoogle Scholar
  2. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494CrossRefGoogle Scholar
  3. Celler K, Picioreanu C, van Loosdrecht MC, van Wezel GP (2012) Structured morphological modeling as a framework for rational strain design of Streptomyces species. Antonie Van Leeuwenhoek 102:409-423Google Scholar
  4. Chao JD, Papavinasasundaram KG, Zheng X, Chávez-Steenbock A, Wang X, Lee GQ, Av-Gay Y (2010) Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J Biol Chem 285(38):29239–29246CrossRefGoogle Scholar
  5. Chater KF (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiol-Sgm 144:1465–1478CrossRefGoogle Scholar
  6. Chater KF, Losick R (1997) Mycelial life style of Streptomyces coelicolor A3(2) and its relatives. In: Shapiro JA, Dworkin M (eds) Bacteria as multicellular organisms. New York, Oxford University Press, pp 149–182Google Scholar
  7. Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS (2011) Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 39(17):7400–7414CrossRefGoogle Scholar
  8. Cheah IK, Halliwell B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 1822(5):784–793CrossRefGoogle Scholar
  9. Claessen D, Wösten HAB, van Keulen G, Faber OG, Alves AM, Meijer WG, Dijkhuizen L (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44(6):1483–1492CrossRefGoogle Scholar
  10. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wösten HAB (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17(14):1714–1726CrossRefGoogle Scholar
  11. Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA, Dijkhuizen L, Wösten HAB (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53(2):433–443CrossRefGoogle Scholar
  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372CrossRefGoogle Scholar
  13. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805CrossRefGoogle Scholar
  14. Cui YQ, Okkerse WJ, van der Lans RG, Luyben KC (1998) Modeling and measurements of fungal growth and morphology in submerged fermentations. Biotechnol Bioeng 60(2):216–229CrossRefGoogle Scholar
  15. de Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HAB (2011) Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77(4):1263–1267CrossRefGoogle Scholar
  16. de Jong W, Manteca A, Sanchez J, Bucca G, Smith CP, Dijkhuizen L, Claessen D, Wösten HAB (2009a) NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor. Mol Microbiol 71(6):1591–1603CrossRefGoogle Scholar
  17. de Jong W, Wösten HAB, Dijkhuizen L, Claessen D (2009b) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73(6):1128–1140CrossRefGoogle Scholar
  18. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17(14):1727–1740CrossRefGoogle Scholar
  19. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1(2):117–126CrossRefGoogle Scholar
  20. Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67(1):52–65CrossRefGoogle Scholar
  21. Flärdh K (2003) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49(6):1523–1536CrossRefGoogle Scholar
  22. Flärdh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49CrossRefGoogle Scholar
  23. Gerasimova A, Kazakov AE, Arkin AP, Dubchak I, Gelfand MS (2011) Comparative genomics of the dormancy regulons in mycobacteria. J Bacteriol 193(14):3446–3452CrossRefGoogle Scholar
  24. Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. New York, Oxford University PressGoogle Scholar
  25. Hunt AC, Servín-González L, Kelemen GH, Buttner MJ (2005) The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. J Bacteriol 187(2):716–728CrossRefGoogle Scholar
  26. Hutter KJ, Eipel HE (1979) Microbial determinations by flow cytometry. J Gen Microbiol 113(2):369–375CrossRefGoogle Scholar
  27. Jakimowicz D, van Wezel GP (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85(3):393–404CrossRefGoogle Scholar
  28. Kelemen GH, Buttner MJ (1998) Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol 1(6):656–662CrossRefGoogle Scholar
  29. Kelley WL (2006) Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 62(5):1228–1238CrossRefGoogle Scholar
  30. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich, UK, The John Innes FoundationGoogle Scholar
  31. Kumar N, Borth N (2012) Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods 56(3):366–374CrossRefGoogle Scholar
  32. Lin PJ, Grimm LH, Wulkow M, Hempel DC, Krull R (2008) Population balance modeling of the conidial aggregation of Aspergillus niger. Biotechnol Bioeng 99(2):341–350CrossRefGoogle Scholar
  33. Nielsen J (1996) Modelling the morphology of filamentous microorganisms. Trends Biotechnol 14(11):438–443CrossRefGoogle Scholar
  34. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11(1):93–98CrossRefGoogle Scholar
  35. Noens EEE, Mersinias V, Willemse J, Traag BA, Laing E, Chater KF, Smith CP, Koerten HK, van Wezel GP (2007) Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an ssgA mutant of Streptomyces coelicolor. Mol Microbiol 64(5):1244–1259CrossRefGoogle Scholar
  36. Phillips AP, Martin KL (1983) Immunofluorescence analysis of Bacillus spores and vegetative cells by flow cytometry. Cytometry 4(2):123–131CrossRefGoogle Scholar
  37. Piette A, Derouaux A, Gerkens P, Noens EEE, Mazzucchelli G, Vion S, Koerten HK, Titgemeyer F, de Pauw E, Leprince P, van Wezel GP, Galleni M, Rigali S (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4:1699–1708CrossRefGoogle Scholar
  38. Sancar A (1996) DNA excision repair. Annu Rev Biochem 65:43–81CrossRefGoogle Scholar
  39. Seebeck FP (2010) In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J Am Chem Soc 132(19):6632–6633CrossRefGoogle Scholar
  40. Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4(4):259–271CrossRefGoogle Scholar
  41. Tough AJ, Prosser JI (1996) Experimental verification of a mathematical model for pelleted growth of Streptomyces coelicolor A3(2) in submerged batch culture. Microbiology 142(Pt 3):639–648CrossRefGoogle Scholar
  42. van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beek N, Muller WH, Arentshorst M, van der Mei HC, Ram AFJ, Dijksterhuis J, Wösten HAB (2012) Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmented mutants. Stud Mycol. doi: 10.3114/sim0008Google Scholar
  43. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333CrossRefGoogle Scholar
  44. van Wezel GP, Krabben P, Traag BA, Keijser BJF, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B (2006) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72(8):5283–5288CrossRefGoogle Scholar
  45. Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210CrossRefGoogle Scholar
  46. Vinck A, Terlou M, Pestman WR, Martens EP, Ram AF, van den Hondel CAMJJ, Wösten HAB (2005) Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 58(3):693–699CrossRefGoogle Scholar
  47. Vrancken K, Anné J (2009) Secretory production of recombinant proteins by Streptomyces. Future Microbiol 4(2):181–188CrossRefGoogle Scholar
  48. Wardell JN, Stocks SM, Thomas CR, Bushell ME (2002) Decreasing the hyphal branching rate of Saccharopolyspora erythraea NRRL 2338 leads to increased resistance to breakage and increased antibiotic production. Biotechnol Bioeng 78(2):141–146CrossRefGoogle Scholar
  49. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143CrossRefGoogle Scholar
  50. Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25(1):89–99CrossRefGoogle Scholar
  51. Xu H, Chater KF, Deng Z, Tao M (2008) A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J Bacteriol 190(14):4971–4978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Jerre van Veluw
    • 1
  • Marloes L. C. Petrus
    • 2
    • 3
  • Jacob Gubbens
    • 4
  • Richard de Graaf
    • 2
    • 3
  • Inez P. de Jong
    • 2
    • 3
  • Gilles P. van Wezel
    • 2
  • Han A. B. Wösten
    • 1
  • Dennis Claessen
    • 2
    • 3
  1. 1.Department of Microbiology, Institute of BiomembranesUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Molecular Biotechnology, Institute Biology Leiden (IBL)Leiden UniversityLeidenThe Netherlands
  3. 3.Department of Molecular and Developmental Genetics, Institute Biology Leiden (IBL)Leiden UniversityLeidenThe Netherlands
  4. 4.Molecular Biotechnology, Leiden Institute of Chemistry (LIC)Leiden UniversityLeidenThe Netherlands
  5. 5.Molecular Biotechnology, Institute Biology LeidenLeiden UniversityLeidenThe Netherlands

Personalised recommendations