Applied Microbiology and Biotechnology

, Volume 97, Issue 1, pp 429–438 | Cite as

Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems

  • Paolo Bombelli
  • Durgaprasad Madras Rajaraman Iyer
  • Sarah Covshoff
  • Alistair J. McCormick
  • Kamran Yunus
  • Julian M. Hibberd
  • Adrian C. Fisher
  • Christopher J. Howe
Bioenergy and biofuels


Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha−1 year−1) than for E. glabrescens (0.088 ± 0.008 GJ ha−1 year−1). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.


Microbial fuel cell Photosynthesis Bioelectricity Electrochemistry Vascular plant 



The authors are grateful for funding provided by the UK Engineering and Physical Sciences Research Council (EPSRC), the Cambridge Commonwealth Trust, Commonwealth Scholarship Commission and Jawaharlal Nehru Memorial Trust.

Supplementary material

253_2012_4473_MOESM1_ESM.pdf (442 kb)
ESM 1 (PDF 442 kb)


  1. Badri DV, Loyola-Vargas VM, Broeckling CD, Vivanco JM (2010) Root secretion of phytochemicals in Arabidopsis is predominantly not influenced by diurnal rhythms. Mol Plant 3:491–498CrossRefGoogle Scholar
  2. Bain RL (2007) World biofuels assessment. Worldwide biomass potential: technology characterizations. National Renewable Energy Laboratory, Dept. of Energy, Golden, CO. NREL/MP. Accessed 19 Jul 2012
  3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  4. Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant–microbe interactions in the rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology, 1st edn. Springer, Berlin, pp 241–252CrossRefGoogle Scholar
  5. Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron P, Davies J, Smith AG, Howe CJ, Fisher AC (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energ Environ Sci 4:4690–4698CrossRefGoogle Scholar
  6. Bombelli P, Zarrouati M, Thorne RJ, Schneider K, Rowden SJL, Ali A, Yunus K, Cameron PJ, Fisher AC, Wilson DI, Howe CJ, McCormick AJ (2012) Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys Chem Chem Phys. doi:10.1039/C2CP42526B
  7. Chen Z, Huang YC, Liang JH, Zhao F, Zhu YG (2012) A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour Technol 108:55–59CrossRefGoogle Scholar
  8. De Schamphelaire LD, Bossche LVD, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058CrossRefGoogle Scholar
  9. Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34:13–27CrossRefGoogle Scholar
  10. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  11. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  12. Elsayed MA, Matthews R, Mortimer ND (2003) Carbon and balances for a range of biofuels options. Project number B/B6/00784/REP, URN 03/836. Sheffield Hallam University. Accessed 19 Jul 2012
  13. Farré EM, Weise SE (2012) The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15:1–8CrossRefGoogle Scholar
  14. Graystone SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  15. Haydon M, Bell LJ, Webb AAR (2011) Interactions between plant circadian clocks and solute transport. J Ex Bot 62:2333–2348CrossRefGoogle Scholar
  16. Helder M, Strik DPBTB, Hamelers HVM, Kuhn AJ, Blok C, Buisman CJN (2010) Concurrent bio-electricity and biomass production in three plant–microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101:3541–3547CrossRefGoogle Scholar
  17. Helder M, Strik DPBTB, Hamelers HVM, Kuijken RCP, Buisman CJN (2012) New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresour Technol 104:417–423CrossRefGoogle Scholar
  18. Hubenova Y, Mitov M (2012) Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochem 87:185–191CrossRefGoogle Scholar
  19. IEA (2010) International Energy Agency, key world energy statistics. Accessed 19 Apr 2012
  20. IFPB (2008) Increasing feedstock production for biofuels: economic drivers, environmental implications, and the role of research, the biomass research and development board. Accessed 19 Jul 2012
  21. IRRI (2012) International rice research institute: helps reduce global poverty & hunger by helping farmers grow more rice & keep people & the environment healthy. Accessed 19 Jul 2012
  22. Kaku N, Yonezawa N, Kodama Y, Watanabe K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49CrossRefGoogle Scholar
  23. Kim IS, Chae KJ, Choi MJ, Verstraete W (2008) Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13:51–65CrossRefGoogle Scholar
  24. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  25. Lovley RD (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332CrossRefGoogle Scholar
  26. Luque R (2010) Algal biofuels: the eternal promise? Energ Environ Sci 3:254–257CrossRefGoogle Scholar
  27. McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162CrossRefGoogle Scholar
  28. McCormick AJ, Bombelli P, Scott AM, Philips AJ, Smith AG, Fisher AC, Howe CJ (2011) Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic (BPV) cell system. Energ Environ Sci 4:4699–4709CrossRefGoogle Scholar
  29. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917Google Scholar
  30. Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Change Biol 12:561–567CrossRefGoogle Scholar
  31. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London 81:465–480Google Scholar
  32. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefGoogle Scholar
  33. Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34:3–12CrossRefGoogle Scholar
  34. Rosenbaum M, Schröder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22:844–855CrossRefGoogle Scholar
  35. Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energ Res 32:870–876CrossRefGoogle Scholar
  36. Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29:41–49CrossRefGoogle Scholar
  37. Takanezawa K, Nishio K, Kato S, Hashimoto K, Watanabe K (2010) Factors affecting electric output from rice-paddy microbial fuel cells. Biosci Biotechnol Biochem 74:1271–1273CrossRefGoogle Scholar
  38. Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981CrossRefGoogle Scholar
  39. Timmers RA, Rothballer M, Strik DPBTB, Engel M, Schulz S, Schloter M, Hamelers HVM, Buisman CJN (2012) Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Appl Microbiol Biotechnol 94:537–548CrossRefGoogle Scholar
  40. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51CrossRefGoogle Scholar
  41. Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetic & economics. Energ Environ Sci 3:554–590CrossRefGoogle Scholar
  42. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104:939–946CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Bombelli
    • 1
  • Durgaprasad Madras Rajaraman Iyer
    • 2
  • Sarah Covshoff
    • 3
  • Alistair J. McCormick
    • 1
  • Kamran Yunus
    • 2
  • Julian M. Hibberd
    • 3
  • Adrian C. Fisher
    • 2
  • Christopher J. Howe
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of Cambridge New Museums SiteCambridgeUK
  3. 3.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations