Applied Microbiology and Biotechnology

, Volume 97, Issue 16, pp 7447–7458 | Cite as

Microbial diversity differences within aerobic granular sludge and activated sludge flocs

  • M-K H. Winkler
  • R. Kleerebezem
  • L. M. M. de Bruin
  • P. J. T. Verheijen
  • B. Abbas
  • J. Habermacher
  • M. C. M. van Loosdrecht
Environmental biotechnology


In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature.


Aerobic granular sludge DGGE Diversity Functional stability amoA 



This study is partly funded by DHV and STOWA in the framework of the Dutch National Nereda® research programme. Thanks to Kartik Chandran from the Columbia University for the supply of genomic DNA.

Supplementary material

253_2012_4472_MOESM1_ESM.docx (435 kb)
ESM 1 (DOCX 434 kb)


  1. Ayala-Del-Río HL, Callister SJ, Criddle CS, Tiedje JM (2004) Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors. Appl Environ Microbiol 70(8):4950–4960PubMedCrossRefGoogle Scholar
  2. Bassin JP, Pronk M, Muyzer G, Kleerebezem R, Dezotti M, van Loosdrecht MCM (2011) Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure. Appl Environ Microbiol 77(22):7942–7953PubMedCrossRefGoogle Scholar
  3. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160PubMedCrossRefGoogle Scholar
  4. Buzas MA, Hayek L-AC (2005) On richness and evenness within and between communities. Paleobiology 31(2):199–220CrossRefGoogle Scholar
  5. Cai-Yun W, Heleen DW, Ludo D, Chris T, Jun-Bin L, Li-Nan H (2011) Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment. Water Res 45(1):1129–1138Google Scholar
  6. Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415(6870):426–429PubMedCrossRefGoogle Scholar
  7. Carrero-Colon M, Nakatsu CH, Konopka A (2006) Microbial community dynamics in nutrient-pulsed chemostats. FEMS Microbiol Ecol 57(1):1–8PubMedCrossRefGoogle Scholar
  8. Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC, Olsson P, Smith DMS, Walker B, Young OR, Berkes F, Biggs R, Grove JM, Naylor RL, Pinkerton E, Steffen W, Swanson FJ (2010) Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol 25(4):241–249PubMedCrossRefGoogle Scholar
  9. Curtis TP, Sloan WT (2006) Towards the design of diversity: stochastic models for community assembly in wastewater treatment plants. Water Sci Technol 54(1):227–236PubMedCrossRefGoogle Scholar
  10. de Bruin LM, de Kreuk MK, van der Roest HF, Uijterlinde C, van Loosdrecht MCM (2004) Aerobic granular sludge technology: an alternative to activated sludge? Water Sci Technol 49(11–12):1–7PubMedGoogle Scholar
  11. de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol 49(11–12, Biofilm Systems V):9–17PubMedGoogle Scholar
  12. Ebrahimi S, Gabus S, Rohrbach-Brandt E, Hosseini M, Rossi P, Maillard J, Holliger C (2010) Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20, 30 and 35 °C. Appl Environ Microbiol 87(4):1555–1568Google Scholar
  13. Egli K, Langer C, Siegrist HR, Zehnder AJB, Wagner M, van der Meer JR (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 69(6):3213–3222PubMedCrossRefGoogle Scholar
  14. European-Water-Framework-Directive (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. 1–73Google Scholar
  15. Falk MW, Song KG, Matiasek MG, Wuertz S (2009) Microbial community dynamics in replicate membrane bioreactors—natural reproducible fluctuations. Water Res 43(3):842–852PubMedCrossRefGoogle Scholar
  16. Fernandez A, Huang SY, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65(8):3697–3704PubMedGoogle Scholar
  17. Gujer W (1977) Design of a nitrifying activated sludge process with the aid of dynamic simulation. Prog Water Technol 9(2):323–336Google Scholar
  18. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, ISBN: 9781843391883Google Scholar
  19. Hornek R, Pommerening-Roser A, Koops HP, Farnleitner AH, Kreuzinger N, Kirschner A, Mach RL (2006) Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment. J Microbiol Meth 66(1):147–155CrossRefGoogle Scholar
  20. Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244PubMedCrossRefGoogle Scholar
  21. Jiang Y, Marang L, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2011) Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnol Bioeng 108(9):2022–2035PubMedCrossRefGoogle Scholar
  22. Lee N, Jansen JL, Aspegren H, Henze M, Nielsen PH, Wagner M (2002) Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal. Water Sci Technol 46(1–2):163–170PubMedGoogle Scholar
  23. Legendre L, Legendre P (1979) Numerical ecology, developments in environmental modelling. Elsevier, AmsterdamGoogle Scholar
  24. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461(7261):254–257, U130PubMedCrossRefGoogle Scholar
  25. Li AJ, Yang SF, Li XY, Gu JD (2008) Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res 42(13):3552–3560PubMedCrossRefGoogle Scholar
  26. Lipson DA, Blair M, Barron-Gafford G, Grieve K, Murthy R (2006) Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microb Ecol 51(3):302–314PubMedCrossRefGoogle Scholar
  27. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68(11):5367–5373PubMedCrossRefGoogle Scholar
  28. McCann KS (2000) The diversity–stability debate. Nature 405(6783):228–233PubMedCrossRefGoogle Scholar
  29. McGuinness LM, Salganik M, Vega L, Pickering KD, Kerkhof LJ (2006) Replicability of bacterial communities in denitrifying bioreactors as measured by PCR/T-RFLP analysis. Environ Sci Technol 40(2):509–515PubMedCrossRefGoogle Scholar
  30. Müller AK, Westergaard K, Christensen S, Sørensen SJ (2000) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44(1):49–58CrossRefGoogle Scholar
  31. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141PubMedCrossRefGoogle Scholar
  32. Naeem S (2009) Ecology: Gini in the bottle. Nature 458(7238):579–580PubMedCrossRefGoogle Scholar
  33. Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390(6659):507–509CrossRefGoogle Scholar
  34. Nicolella C, van Loosdrecht MCM, Heijnen SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18(7):312–320PubMedCrossRefGoogle Scholar
  35. Park HD, Regan JM, Noguera DR (2002) Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes. Water Sci Technol 46:273–280PubMedGoogle Scholar
  36. Pholchan MK, Baptista JD, Davenport RJ, Curtis TP (2010) Systematic study of the effect of operating variables on reactor performance and microbial diversity in laboratory-scale activated sludge reactors. Water Res 44(5):1341–1352PubMedCrossRefGoogle Scholar
  37. Picioreanu C, Van Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 72(2):205–218CrossRefGoogle Scholar
  38. Pielou EC (1981) The usefulness of ecological models: a stock taking. Q Rev Biol 55:17–31CrossRefGoogle Scholar
  39. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712PubMedGoogle Scholar
  40. Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003) Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43(2):195–206PubMedCrossRefGoogle Scholar
  41. Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia oxidizing bacteria. Appl Environ Microbiol 62:4147–4154PubMedGoogle Scholar
  42. Stirling G, Wilsey B (2001) Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158(3):286–299PubMedCrossRefGoogle Scholar
  43. Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80:1121–1130PubMedCrossRefGoogle Scholar
  44. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302CrossRefGoogle Scholar
  45. van Nostrand JD, Wu L, Wu WM, Huang Z, Gentry TJ, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle CS, Watson DB, Jardine PM, Marsh TL, Tiedje JM, Hazen TC, Zhou J (2011) Erratum: Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. Appl Environ Microbiol 77(14):5063CrossRefGoogle Scholar
  46. Wells GF, Park H, Yeung C, Eggleston B, Christopher AF, Criddle CS (2009) Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 11(9):2310–232823PubMedCrossRefGoogle Scholar
  47. Wells GF, Park H, Eggleston B, Cooper A, Criddle FC (2011) Fine-scale bacterial community dynamics and the taxa–time relationship within a full-scale activated sludge bioreactor. Water Res 45:5476–5488PubMedCrossRefGoogle Scholar
  48. Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81(4):887–892CrossRefGoogle Scholar
  49. Winkler MKH, Bassin JP, Kleerebezem R, van Loosdrecht MCM, van den Brand TPH (2011a) Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures. Water Res 45(11):3291–3299PubMedCrossRefGoogle Scholar
  50. Winkler MKH, Kleerebezem R, Kuenen JG, Yang J, van Loosdrecht MCM (2011b) Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures. Environ Sci Technol 45(17):7330–7337PubMedCrossRefGoogle Scholar
  51. Winkler MH, Kleerebezem R, Khunjar W, Bart de B, van Loosdrecht MCM (2012) Evaluating the solid retention time of bacteria in flocculent and granular sludge. Water Res., acceptedGoogle Scholar
  52. Wittebolle L, Vervaeren H, Verstraete W, Boon N (2008) Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microbiol 74(1):286–293PubMedCrossRefGoogle Scholar
  53. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458(7238):623–626PubMedCrossRefGoogle Scholar
  54. Xavier JB, De Kreuk MK, Picioreanu C, Van Loosdrecht MCM (2007) Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge. Environ Sci Technol 41(18):6410–6417PubMedCrossRefGoogle Scholar
  55. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96(4):1463–1468PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M-K H. Winkler
    • 1
  • R. Kleerebezem
    • 1
  • L. M. M. de Bruin
    • 2
  • P. J. T. Verheijen
    • 1
  • B. Abbas
    • 1
  • J. Habermacher
    • 1
    • 3
  • M. C. M. van Loosdrecht
    • 1
  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.DHVAmersfoortThe Netherlands
  3. 3.Department of Environmental Science and EngineeringFederal Polytechnical Highschool Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations