Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia

  • 492 Accesses

  • 18 Citations


Imidacloprid, the largest selling insecticide in the world, is more stable in soil, and its environmental residue and effects are attracting people's close attention. One of imidacloprid metabolism pathways was degraded to CO2 through olefin imidacloprid pathway. Here, we report that sucrose as a utilizable substrate enhanced the cometabolism of imidacloprid by Stenotrophomonas maltophilia CGMCC 1.1788 to produce 5-hydroxy imidacloprid, whereas when succinate was used as a utilizable substrate, 5-hydroxy imidacloprid from imidacloprid was transformed to olefin imidacloprid, and the latter was further degraded. The hydroxylation of imidacloprid required NAD(P)H, whereas the dehydration of 5-hydroxy imidacloprid to form olefin imidacloprid required succinate rather than NAD(P)H. NADPH greatly favored the hydroxylation of imidacloprid more than NADH, and NADPH inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, but NADH did not. Therefore, sucrose may be metabolized through hexose monophosphate pathway to produce mainly NADPH which participated in the hydroxylation of imidacloprid to 5-hydroxy imidacloprid and meanwhile inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, whereas succinate may be metabolized mainly through the tricarboxylic acid cycle to produce NADH which was involved in hydroxylation of imidacloprid to 5-hydroxy imidacloprid but did not inhibit the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid. Our results have a significant meaning in further understanding the influence of different utilizable substrates on the cometabolic pathways and the fate of environmental imidacloprid.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Anhalt JC, Moorman TB, Koskinen WC (2007) Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health B 42(5):509–514. doi:10.1080/03601230701391401

  2. Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61(8):742–748. doi:10.1002/ps.1046

  3. Casida JE (2011) Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem 59(7):2923–2931. doi:10.1021/jf102438c

  4. Daddaoua A, Krell T, Ramos JL (2009) Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and Entner-Doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 284(32):21360–21368. doi:10.1074/jbc.M109.014555

  5. Dai Y, Yuan S, Ge F, Chen T, Xu S, Ni J (2006) Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid. Appl Microbiol Biot 71(6):927–934. doi:10.1007/s00253-005-0223-3

  6. Dai YJ, Chen T, Ge F, Huan Y, Yuan S, Zhu FF (2007) Enhanced hydroxylation of imidacloprid by Stenotrophomonas maltophilia upon addition of sucrose. Appl Microbiol Biot 74(5):995–1000. doi:10.1007/s00253-006-0762-2

  7. Dalton H, Stirling DI (1982) Co-metabolism. Philos T Roy Soc B 297(1088):481–496. doi:10.1098/rstb.1982.0056

  8. Dick RA, Kanne DB, Casida JE (2005) Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol 18(2):317–323. doi:10.1021/Tx049737i

  9. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64(11):1099–1105. doi:10.1002/Ps.1616

  10. Ellis PA, Camper ND (1982) Aerobic degradation of diuron by aquatic microorganisms. J Environ Sci Health B 17(3):277–289. doi:10.1080/03601238209372319

  11. Ford KA, Casida JE (2008) Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J Agr Food Chem 56(21):10168–10175. doi:10.1021/Jf8020909

  12. Gao B, Liu WB, Jia LY, Xu L, Xie J (2011) Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health B 46(3):257–263. doi:10.1080/03601234.2011.540534

  13. Janke D, Fritsche W (1985) Nature and significance of microbial cometabolism of xenobiotics. J Basic Microb 25(9):603–619. doi:10.1002/jobm.3620250910

  14. Krohn J, Hellpointner E (2002) Environmental fate of imidacloprid. Pflanzenschutz-Nachrichten Bayer (special edn) 55:3–26

  15. Lange K, Proft E (1970) Inhibition of the 6-phosphogluconate dehydrogenase in the rat kidney by 6-aminonicotinamide. N-S Arch Pharmacol 267(2):177–180. doi:10.1007/BF00999399

  16. Liu ZH, Dai YJ, Huang GD, Gu YY, Ni J, Wei H, Yuan S (2011) Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag Sci 67(10):1245–1252. doi:10.1002/Ps.2174

  17. Loh KC, Wang SJ (1997) Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation 8(5):329–338. doi:10.1023/A:1008267607634

  18. Loh KC, Wu TT (2006) Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Can J Chem Eng 84(3):356–367. doi:10.1002/cjce.5450840312

  19. Mitsukura K, Kondo Y, Yoshida T, Nagasawa T (2006) Regioselective hydroxylation of adamantane by Streptomyces griseoplanus cells. Appl Microbiol Biot 71(4):502–504. doi:10.1007/s00253-005-0167-7

  20. National Research Council (2007) Status of pollinators in North America. National Academy of Sciences, Washington

  21. Pettis JS, vanEngelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99(2):153–158. doi:10.1007/s00114-011-0881-1

  22. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34(5):658–684. doi:10.1111/j.1574-6976.2010.00218.x

  23. Sarkar MA, Roy S, Kole RK, Chowdhury A (2001) Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci 57(7):598–602. doi:10.1002/ps.328

  24. Schirawski J, Unden G (1998) Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257(1):210–215. doi:10.1046/j.1432-1327.1998.2570210.x

  25. Schulz-Jander DA, Casida JE (2002) Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol Lett 132(1):65–70. doi:10.1016/S0378-4274(02)00068-1

  26. Schulz-Jander DA, Leimkuehler WM, Casida JE (2002) Neonicotinoid insecticides: reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes. Chem Res Toxicol 15(9):1158–1165. doi:10.1021/Tx0200360

  27. Utture SC, Banerjee K, Kolekar SS, Dasgupta S, Oulkar DP, Patil SH, Wagh SS, Adsule PG, Anuse MA (2012) Food safety evaluation of buprofezin, dimethoate and imidacloprid residues in pomegranate. Food Chem 131(3):787–795. doi:10.1016/j.foodchem.2011.09.044

  28. Xie S, Liu JX, Li L, Qiao CL (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci-China 21(1):76–82. doi:10.1016/S1001-0742(09)60014-0

  29. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677. doi:10.1038/35089509

  30. Zhang HJ, Zhou QW, Zhou GC, Cao YM, Dai YJ, Ji WW, Shang GD, Yuan S (2012) Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J Agric Food Chem 60(1):153–9. doi:10.1021/jf203232u

Download references


We thank Dr. Joseph Li for review of the initial draft in Utah State University, Logan, UT, USA. This research is financed by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Key Basic Research Program of Jiangsu Higher Education Institution of China (06KJA21016), National Science Foundation of China (30970040), and the Program of Jiangsu Higher Education Institution of China (09KJB180003).

Author information

Correspondence to Yijun Dai or Sheng Yuan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z., Dai, Y., Huan, Y. et al. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia . Appl Microbiol Biotechnol 97, 6537–6547 (2013) doi:10.1007/s00253-012-4444-y

Download citation


  • Imidacloprid
  • Biocometabolism
  • Utilizable substrate
  • Cofactor