Advertisement

Applied Microbiology and Biotechnology

, Volume 96, Issue 4, pp 1079–1091 | Cite as

An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile

  • Yu Shen
  • Xiao Chen
  • Bingyin Peng
  • Liyuan Chen
  • Jin Hou
  • Xiaoming Bao
Bioenergy and biofuels

Abstract

Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The μ max of the evolved strain in 20 g l−1 xylose is 0.11 ± 0.00 h−1, and the evolved strain consumed 17.83 g l−1 xylose within 72 h, with an ethanol yield of 0.43 g g−1 total consumed sugars during glucose–xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase acivity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains.

Keywords

Xylose isomerase Respiratory deficiency Ethanol PDC6 PHO13 CWP1 

Notes

Acknowledgments

This work was supported by the National Key Basic Research Program (2011CB707405), the International S&T Cooperation Program of China (2010DFA32560), and the National Natural Science Foundation of China (30970091 and 31070096).We would like to thank Dr. Peter Kötter of the Johann Wolfgang Goethe-University in Frankfurt for supplying the CEN.PK strains.

Supplementary material

253_2012_4418_MOESM1_ESM.docx (314 kb)
ESM 1 (DOCX 314 kb)

References

  1. Boles E, Gohlmann HW, Zimmermann FK (1996) Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol 20(1):65–76CrossRefGoogle Scholar
  2. Busti S, Coccetti P, Alberghina L, Vanoni M (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors 10(6):6195–6240CrossRefGoogle Scholar
  3. dos Santos SC, Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5–6):333–346CrossRefGoogle Scholar
  4. Eliasson A, Boles E, Johansson B, Osterberg M, Thevelein JM, Spencer-Martins I, Juhnke H, Hahn-Hägerdal B (2000a) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(4):376–382CrossRefGoogle Scholar
  5. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000b) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381–3386CrossRefGoogle Scholar
  6. Entian KD, Kötter P (1998) Yeast mutant and plasmid collections. In: Brown AJP, Tuite MF (eds) Methods in microbiology, volume 26. Academic, San Diego, pp 431–449Google Scholar
  7. Fujitomi K, Sanda T, Hasunuma T, Kondo A (2012) Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161–166CrossRefGoogle Scholar
  8. Garcia Sanchez R, Karhumaa K, Fonseca C, Sanchez Nogue V, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13CrossRefGoogle Scholar
  9. Gardonyi M, Jeppsson M, Lidén G, Gorwa-Grauslund MF, Hahn-Hägerdal B (2003) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82(7):818–824CrossRefGoogle Scholar
  10. Gietz RD, Akio S (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74(2):527–534CrossRefGoogle Scholar
  11. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953CrossRefGoogle Scholar
  12. Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173(24):7963–7969Google Scholar
  13. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509CrossRefGoogle Scholar
  14. Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70(11):6816–6825CrossRefGoogle Scholar
  15. Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Factories 6:5CrossRefGoogle Scholar
  16. Kersters-Hilderson H, Callens M, Van Opstal O, Vangrysperre W, De Bruyne CK (1987) Kinetic characterization of d-xylose isomerases by enzymatic assays using d-sorbitol dehydrogenase. Enzyme Microb Technol 9(3):145–148CrossRefGoogle Scholar
  17. Kim DM, Choi SH, Ko BS, Jeong GY, Jang HB, Han JG, Jeong KH, Lee HY, Won Y, Kim IC (2012) Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. Bioprocess Biosyst Eng 35(1–2):183–189CrossRefGoogle Scholar
  18. Klis FM, Boorsma A, De Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23(3):185–202CrossRefGoogle Scholar
  19. Kretschmer M, Fraenkel DG (1991) Yeast 6-phosphofructo-2-kinase: sequence and mutant. Biochemistry 30(44):10663–10672CrossRefGoogle Scholar
  20. Küfer R, Thamasett S, Volkmer B, Hautmann RE, Gschwend JE (2001) New-generation lithotripters for treatment of patients with implantable cardioverter defibrillator: experimental approach and review of literature. J Endourol 15(5):479–484CrossRefGoogle Scholar
  21. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664CrossRefGoogle Scholar
  22. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409CrossRefGoogle Scholar
  23. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934CrossRefGoogle Scholar
  24. Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280CrossRefGoogle Scholar
  25. Lee P, Cho BR, Joo HS, Hahn JS (2008) Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol 70(4):882–895Google Scholar
  26. Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, Lin J, Qu Y, Xiao L (2010) High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol 101(13):4952–4958CrossRefGoogle Scholar
  27. Müller S, Zimmermann FK, Boles E (1997) Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology 143(Pt 9):3055–3061CrossRefGoogle Scholar
  28. Nevoigt E, Stahl U (1996) Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase NAD+ levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12(13):1331–1337CrossRefGoogle Scholar
  29. Parachin NS, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Yeast 27(9):741–751CrossRefGoogle Scholar
  30. Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, Francois J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15(3):191–203CrossRefGoogle Scholar
  31. Peng B, Chen X, Shen Y, Bao X (2011) Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao 51(7):914–922Google Scholar
  32. Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14(1):9–18CrossRefGoogle Scholar
  33. Pringle JR (1991) Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:732–735CrossRefGoogle Scholar
  34. Roca C, Nielsen J, Olsson L (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69(8):4732–4736CrossRefGoogle Scholar
  35. Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82(1):123–130CrossRefGoogle Scholar
  36. Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M (2006) Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128(3):237–261CrossRefGoogle Scholar
  37. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169Google Scholar
  38. Smits GJ, Schenkman LR, Brul S, Pringle JR, Klis FM (2006) Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol Biol Cell 17(7):3267–3280CrossRefGoogle Scholar
  39. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69(4):1990–1998CrossRefGoogle Scholar
  40. Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307–2317CrossRefGoogle Scholar
  41. van Bakel H, Strengman E, Wijmenga C, Holstege FC (2005) Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 22(3):356–367CrossRefGoogle Scholar
  42. van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418CrossRefGoogle Scholar
  43. van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab Eng 10(6):360–369CrossRefGoogle Scholar
  44. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48(2):218–224CrossRefGoogle Scholar
  45. Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26(11):885–890CrossRefGoogle Scholar
  46. Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6(5):e1000942CrossRefGoogle Scholar
  47. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914CrossRefGoogle Scholar
  48. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci U S A 108(32):13212–13217CrossRefGoogle Scholar
  49. Xiong M, Chen G, Barford J (2011) Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour Technol 102(19):9206–9215CrossRefGoogle Scholar
  50. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15CrossRefGoogle Scholar
  51. Zhang L, Zhang Y, Zhou Y, An S, Cheng J (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 49(6):905–915CrossRefGoogle Scholar
  52. Zhang M, Liang Y, Zhang X, Xu Y, Dai H, Xiao W (2008) Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 103(1):68–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yu Shen
    • 1
  • Xiao Chen
    • 1
  • Bingyin Peng
    • 1
  • Liyuan Chen
    • 1
  • Jin Hou
    • 1
  • Xiaoming Bao
    • 1
  1. 1.The State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations