Applied Microbiology and Biotechnology

, Volume 96, Issue 4, pp 1039–1047 | Cite as

Validation of the use of multiple internal control genes, and the application of real-time quantitative PCR, to study esterase gene expression in Oenococcus oeni

  • Krista M. Sumby
  • Paul R. Grbin
  • Vladimir Jiranek
Methods and protocols


The study of gene expression and accurate quantitation of target genes in any organism depends on correct normalisation. Due to the increase in studies on Oenococcus oeni gene expression, there is a clear need for alternative reference genes in order to reliably measure expression levels. In this manuscript, we propose the approach of using multiple reference genes to provide a more robust basis for establishing a reference gene set. The identification and evaluation of a panel of nine reference genes, including the commonly used ldhD, for real-time PCR normalisation was performed in O. oeni. Expression levels of these reference genes were then measured by real-time qPCR in an independent set of O. oeni samples (n = 30). The nine genes were ranked according to their stability of gene expression measure (M) using geNorm to identify the most consistently expressed reference genes. This approach resulted in the identification of multiple reference genes that may be used for a screening and more robust normalisation of target gene expression measured by real-time RT-qPCR. Expression of esterase genes was then measured in these O. oeni samples in the presence of known esterase substrates. The results give an indication of how these genes may be involved in ester synthesis and hydrolysis in O. oeni.


qPCR Reference genes Oenococcus oeni Esterase 


  1. Beltramo C, Desroche N, Tourdot-Maréchal R, Grandvalet C, Guzzo J (2006) Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium. Res Microbiol 157(3):267–274CrossRefGoogle Scholar
  2. Bendtsen JD, Kiemer L, Fausbøll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiology 5(58):doi:10.1186/1471-2180-1185-1158Google Scholar
  3. Bourdineaud JP, Nehme B, Tesse S, Lonvaud-Funel A (2003) The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl Environ Microbiol 69(5):2512–2520CrossRefGoogle Scholar
  4. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefGoogle Scholar
  5. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370CrossRefGoogle Scholar
  6. Chou K, Shen H (2010) Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science 2(10):1090–1103CrossRefGoogle Scholar
  7. Costantini A, Vaudano E, Rantsiou K, Cocolin L, Garcia-Moruno E (2011) Quantitative expression analysis of mleP gene and two genes involved in the ABC transport system in Oenococcus oeni during rehydration. Appl Microbiol Biotechnol 91(6):1601–1609CrossRefGoogle Scholar
  8. Davis CR, Wibowo D, Eschenbruch R, Lee TH, Fleet GH (1985) Practical implications of malolactic fermentation: a review. Am J Enol Vitic 36(4):290–301Google Scholar
  9. de Revel G, Martin N, Pripis-Nicolau L, Lonvaud-Funel A, Bertrand A (1999) Contribution to the knowledge of malolactic fermentation influence on wine aroma. J Agric Food Chem 47(10):4003–4008CrossRefGoogle Scholar
  10. Delaquis P, Cliff M, King M, Girard B, Hall J, Reynolds A (2000) Effect of two commercial malolactic cultures on the chemical and sensory properties of Chancellor wines vinified with different yeasts and fermentation temperatures. Am J Enol Vitic 51(1):42–48Google Scholar
  11. Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60(3):325–333CrossRefGoogle Scholar
  12. Duary RK, Batish VK, Grover S (2010) Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res Microbiol 161(5):399–405CrossRefGoogle Scholar
  13. Duquenne M, Fleurot I, Aigle M, Darrigo C, Borezee-Durant E, Derzelle S, Bouix M, Deperrois-Lafarge V, Delacroix-Buchet A (2010) Tool for quantification of staphylococcal enterotoxin gene expression in cheese. Appl Environ Microbiol 76(5):1367–1374CrossRefGoogle Scholar
  14. Fiocco D, Crisetti E, Capozzi V, Spano G (2008) Validation of an internal control gene to apply reverse transcription quantitative PCR to study heat, cold and ethanol stresses in Lactobacillus plantarum. World J Microb Biot 24(6):899–902CrossRefGoogle Scholar
  15. Grandvalet C, Coucheney F, Beltramo C, Guzzo J (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187:5614–5623CrossRefGoogle Scholar
  16. Guzzo J (2011) Stress Responses of Oenococcus oeni. In: Tsakalidou E, Papadimitriou K (eds) Stress responses of lactic acid bacteria. Springer, New York, pp 349–365CrossRefGoogle Scholar
  17. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2:R19), doi:10.1186/gb-2007-1188-1182-r1119
  18. Kim OB, Richter H, Zaunmüller T, Graf S, Unden G (2011) Glucose transport by Oenococcus oeni: role of secondary transporters and phosphotransferase systems. J Bacteriol. doi:10.1128/JB.06038-11
  19. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081CrossRefGoogle Scholar
  20. Maicas S, Gil J-V, Pardo I, Ferrer S (1999) Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res Int 32:491–496CrossRefGoogle Scholar
  21. Matthews A, Grbin P, Jiranek V (2006) A survey of lactic acid bacteria for enzymes of interest to oenology. Aust J Grape Wine Res 12:235–244CrossRefGoogle Scholar
  22. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475Google Scholar
  23. Olguín N, Bordons A, Reguant C (2009) Influence of ethanol and pH on the gene expression of the citrate pathway in Oenococcus oeni. Food Microbiol 26(2):197–203CrossRefGoogle Scholar
  24. Olguín N, Bordons A, Reguant C (2010) Multigenic expression analysis as an approach to understanding the behaviour of Oenococcus oeni in wine-like conditions. Int J Food Microbiol 144(1):88–95CrossRefGoogle Scholar
  25. Olguín N, Alegret JO, Bordons A, Reguant C (2011) β-Glucosidase activity and bgl gene expression of Oenococcus oeni strains in model media and Cabernet Sauvignon wine. Wine Am J Enol Vitic 62(1):99–105CrossRefGoogle Scholar
  26. Pozo-Bayón MA, Alegría EG, Polo MC, Tenorio C, Martín-Álvarez PJ, Calvo de la Banda MT, Ruiz-Larrea F, Moreno-Arribas MV (2005) Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J Agric Food Chem 53:8729–8735CrossRefGoogle Scholar
  27. Ritt JF, Remize F, Grandvalet C, Guzzo J, Atlan D, Alexandre H (2009) Peptidases specific for proline-containing peptides and their unusual peptide-dependent regulation in Oenococcus oeni. J Appl Microbiol 106(3):801–813CrossRefGoogle Scholar
  28. Ritz M, Garenaux A, Berge M, Federighi M (2009) Determination of rpoA as the most suitable internal control to study stress response in C. jejuni by RT-qPCR and application to oxidative stress. J Microbiol Methods 76(2):196–200CrossRefGoogle Scholar
  29. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52(5):403–408CrossRefGoogle Scholar
  30. Seta FD, Boschi-Muller S, Vignais ML, Branlant G (1997) Characterization of Escherichia coli strains with gapA and gapB genes deleted. J Bacteriol 179(16):5218–5221Google Scholar
  31. Sumby KM, Matthews AH, Grbin PR, Jiranek V (2009) Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 75(21):6729–6735CrossRefGoogle Scholar
  32. Sumby KM, Grbin PR, Jiranek V (2010) Microbial modulation of aromatic esters in wine: current knowledge and future prospects. Food Chem 121(1):1–16CrossRefGoogle Scholar
  33. Sumby KM, Grbin PR, Jiranek V (2012a) Characterisation of EstCOo8 and EstC34, intracellular esterases, from the wine associated lactic acid bacterium Oenococcus oeni and Lactobacillus hilgardii. (in press)Google Scholar
  34. Sumby KM, Grbin PR, Jiranek V (2012b) Ester synthesis and hydrolysis in an aqueous environment, and strain specific changes during malolactic fermentation in wine with Oenococcus oeni. (in press)Google Scholar
  35. Turroni S, Bendazzoli C, Dipalo SCF, Candela M, Vitali B, Gotti R, Brigidi P (2010) Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl Environ Microbiol 76(16):5609–5620CrossRefGoogle Scholar
  36. Ugliano M, Moio L (2005) Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J Agric Food Chem 53:10134–10139CrossRefGoogle Scholar
  37. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183(24):7094–7101CrossRefGoogle Scholar
  38. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034–research0034.0011CrossRefGoogle Scholar
  39. Vaudano E, Noti O, Costantini A, Garcia-Moruno E (2011) Identification of reference genes suitable for normalization of RT-qPCR expression data in Saccharomyces cerevisiae during alcoholic fermentation. Biotechnol Lett 33(8):1593–1599CrossRefGoogle Scholar
  40. Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Protein Struct Funct Bioinforma 64(3):643–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krista M. Sumby
    • 1
  • Paul R. Grbin
    • 1
  • Vladimir Jiranek
    • 1
  1. 1.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia

Personalised recommendations