Applied Microbiology and Biotechnology

, Volume 97, Issue 6, pp 2627–2638 | Cite as

AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms

  • Varnika Roy
  • Mariana T. Meyer
  • Jacqueline A. I. Smith
  • Sonja Gamby
  • Herman O. Sintim
  • Reza Ghodssi
  • William E. Bentley
Applied Microbial and Cell Physiology


Quorum sensing (QS), the process of autoinducer-mediated cell–cell signaling among bacteria, facilitates biofilm formation, virulence, and many other multicellular phenotypes. QS inhibitors are being investigated as antimicrobials because of their potential to reduce symptoms of infectious disease while slowing the emergence of resistant strains. Autoinducer-2 (AI-2) analogs have been shown to inhibit genotypic QS responses among many bacteria. We demonstrate for the first time, the ability of C1-alkyl AI-2 analog, isobutyl-DPD, to significantly inhibit the maturation of Escherichia coli biofilms grown in vitro. Using a novel microfluidic device that incorporates dynamic, real-time measurements of biofilm density, we also show that a combinatorial approach wherein isobutyl-DPD ((S)-4,5-dihydroxy-2,3-pentanedione) is used with the antibiotic gentamicin is quite effective in rendering near complete clearance of pre-existing E. coli biofilms. Similarly, another AI-2 analog, phenyl-DPD, also used in combination with near MIC levels of gentamicin, resulted in clearance of preformed Pseudomonas aeruginosa biofilms. Clearance of pre-existing biofilms has remained a significant health care challenge; these results warrant consideration of a new approach based on the combination of “quenching” QS signal transduction processes with traditional antibiotic treatment.


AI-2 Biofilms Quorum quenching Quorum sensing 

Supplementary material

253_2012_4404_MOESM1_ESM.pdf (32 kb)
ESM 1(PDF 32 kb)


  1. Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB (2007) The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56(Pt 5):681–7. doi:10.1099/jmm.0.47094-0 CrossRefGoogle Scholar
  2. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105. doi:10.1007/978-3-540-75418-3_5 CrossRefGoogle Scholar
  3. Baldrich E, Munoz FX, Garcia-Aljaro C (2011) Electrochemical detection of quorum sensing signaling molecules by dual signal confirmation at microelectrode arrays. Anal Chem 83(6):2097–103. doi:10.1021/ac1028243 CrossRefGoogle Scholar
  4. Ben-Yoav H, Amzel T, Biran A, Sternheim M, Belkin S, Freeman A, Shacham-Diamand Y (2011) Bacterial biofilm-based water toxicity sensor. Sensor Actuat B-Chem 158(1):366–371. doi:10.1016/j.snb.2011.06.037 CrossRefGoogle Scholar
  5. Blehert DS, Palmer RJ Jr, Xavier JB, Almeida JS, Kolenbrander PE (2003) Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185(16):4851–60. doi:10.1128/JB.185.16.4851-4860.2003 CrossRefGoogle Scholar
  6. Bose S, Ghosh AK (2011) Biofilms: a challenge to medical science. J Clin Diag Res 5(1):127–130Google Scholar
  7. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55(6):2655–61. doi:10.1128/AAC.00045-11 CrossRefGoogle Scholar
  8. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069. doi:10.1038/nature05741 CrossRefGoogle Scholar
  9. Cheng Y, Luo X, Tsao CY, Wu HC, Betz J, Payne GF, Bentley WE, Rubloff GW (2011) Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab Chip 11(14):2316–8. doi:10.1039/c1lc20306a CrossRefGoogle Scholar
  10. Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Hoiby N, Bjarnsholt T, Givskov M (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67(5):1198–206. doi:10.1093/jac/dks002 CrossRefGoogle Scholar
  11. Churchill SW, Usagi R (1972) A general expression for the correlation of rates of transfer and other phenomena. AICHE J 18:1121–1128. doi:10.1002/aic.690180606 CrossRefGoogle Scholar
  12. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–45. doi:10.1146/annurev.mi.49.100195.003431 CrossRefGoogle Scholar
  13. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–22. doi:10.1126/science.284.5418.1318 CrossRefGoogle Scholar
  14. Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59(4):1181–6. doi:0099-2240/93/041181-06 Google Scholar
  15. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–8. doi:10.1126/science.280.5361.295 CrossRefGoogle Scholar
  16. de Beer D, Stoodley P, Lewandowski Z (1994) Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44(5):636–41. doi:10.1002/bit.260440510 CrossRefGoogle Scholar
  17. Duan KM, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50(5):1477–1491. doi:10.1046/j.1365-2958.2003.03803.x CrossRefGoogle Scholar
  18. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166. doi:10.1128/cmr.15.2.155-166.2002 CrossRefGoogle Scholar
  19. Gamby S, Roy V, Guo M, Smith JA, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO (2012) Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 7(6):1023–30. doi:10.1021/cb200524y CrossRefGoogle Scholar
  20. Ganderton L, Chawla J, Winters C, Wimpenny J, Stickler D (1992) Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11(9):789–96. doi:10.1007/bf01960877 CrossRefGoogle Scholar
  21. Ganin H, Tang X, Meijler MM (2009) Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorg Med Chem Lett 19(14):3941–4. doi:10.1016/j.bmcl.2009.03.163 CrossRefGoogle Scholar
  22. Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127(37):12762–3. doi:10.1021/ja0530321 CrossRefGoogle Scholar
  23. Gfeller KY, Nugaeva N, Hegner M (2005) Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosens Bioelectron 21(3):528–533. doi:DOI 10.1016/j.bios.2004.11.018 CrossRefGoogle Scholar
  24. Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188(1):305–16. doi:10.1128/JB.188.1.305-316.2006 CrossRefGoogle Scholar
  25. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42(5):1199–1209. doi:10.1046/j.1365-2958.2001.02709.x CrossRefGoogle Scholar
  26. Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188(2):587–98. doi:10.1128/JB.188.2.587-598.2006 CrossRefGoogle Scholar
  27. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–407Google Scholar
  28. Kadurugamuwa JL, Clarke AJ, Beveridge TJ (1993) Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol 175(18):5798–805. doi:0021-9193/93/185798-08 Google Scholar
  29. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–8. doi:S0378109703008565 CrossRefGoogle Scholar
  30. Kim KP, Kim YG, Choi CH, Kim HE, Lee SH, Chang WS, Lee CS (2010) In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 10(23):3296–9. doi:10.1039/c0lc00154f CrossRefGoogle Scholar
  31. Kumon H, Tomochika K, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–9Google Scholar
  32. Lewis K (2010) Persister cells. Annu Rev Microbiol 64(1):357–72. doi:10.1146/annurev.micro.112408.134306 CrossRefGoogle Scholar
  33. Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE (2007) Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 189(16):6011–20. doi:10.1128/JB.00014-07 CrossRefGoogle Scholar
  34. Lowery CA, Park J, Kaufmann GF, Janda KD (2008) An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues. J Am Chem Soc 130(29):9200–1. doi:10.1021/ja802353j CrossRefGoogle Scholar
  35. Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD (2009) Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc 131(43):15584–5. doi:10.1021/ja9066783 CrossRefGoogle Scholar
  36. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39. doi:10.1016/s0966-842x(00)01913-2 CrossRefGoogle Scholar
  37. Mawer SL, Greenwood D (1978) Specific and nonspecific resistance to aminoglycosides in Escherichia coli. J Clin Pathol 31(1):12–15. doi:10.1136/jcp. 31.1.12 CrossRefGoogle Scholar
  38. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185(1):274–84. doi:10.1128/jb. CrossRefGoogle Scholar
  39. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71(4):1972–9. doi:10.1128/iai.71.4.1972-1979.2003 CrossRefGoogle Scholar
  40. Meyer MT, Roy V, Bentley WE, Ghodssi R (2011) Development and validation of a microfluidic reactor for biofilm monitoring via optical methods. J Micromech Microeng 21(5) doi:10.1088/0960-1317/21/5/054023
  41. Nakamura S, Higashiyama Y, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Mizuta Y, Kohno S (2008) The roles of the quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa. Jpn J Infect Dis 61(5):375–8Google Scholar
  42. Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27(4):619–624. doi:10.1128/AAC.27.4.619 CrossRefGoogle Scholar
  43. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92Google Scholar
  44. Pan J, Ren D (2009) Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat 19(11):1581–601. doi:10.1517/13543770903222293 CrossRefGoogle Scholar
  45. Rasmussen TB, Givskov M (2006a) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296(2–3):149–61. doi:10.1016/j.ijmm.2006.02.005 CrossRefGoogle Scholar
  46. Rasmussen TB, Givskov M (2006b) Quorum sensing inhibitors: a bargain of effects. Microbiology 152(Pt 4):895–904. doi:10.1099/mic.0.28601-0 CrossRefGoogle Scholar
  47. Renzi RF, Stamps J, Horn BA, Ferko S, Vandernoot VA, West JA, Crocker R, Wiedenman B, Yee D, Fruetel JA (2005) Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal Chem 77(2):435–41. doi:10.1021/ac049214f CrossRefGoogle Scholar
  48. Rogers SA, Krayer M, Lindsey JS, Melander C (2009) Tandem dispersion and killing of bacteria from a biofilm. Org Biomol Chem 7(3):603–6. doi:10.1039/b817923a CrossRefGoogle Scholar
  49. Romero R, Schaudinn C, Kusanovic JP, Gorur A, Gotsch F, Webster P, Nhan-Chang CL, Erez O, Kim CJ, Espinoza J, Goncalves LF, Vaisbuch E, Mazaki-Tovi S, Hassan SS, Costerton JW (2008) Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol 198(1):135e1–5. doi:10.1016/j.ajog.2007.11.026 Google Scholar
  50. Roy V, Smith JAI, Wang J, Stewart JE, Bentley WE, Sintim HO (2010) Synthetic analogs tailor native Al-2 signaling across bacterial species. J Am Chem Soc 132(32):11141–11150. doi:10.1021/ja102587w CrossRefGoogle Scholar
  51. Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol 49(2):113–23. doi:10.1016/j.enzmictec.2011.06.001 CrossRefGoogle Scholar
  52. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67(11):5854–5862Google Scholar
  53. Schaber JA, Triffo WJ, Suh SJ, Oliver JW, Hastert MC, Griswold JA, Auer M, Hamood AN, Rumbaugh KP (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721. doi:10.1128/iai.00586-07 CrossRefGoogle Scholar
  54. Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49(2):309–14. doi:10.1093/jac/49.2.309 CrossRefGoogle Scholar
  55. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–4. doi:10.1038/35037627 CrossRefGoogle Scholar
  56. Smith JA, Wang J, Nguyen-Mau SM, Lee V, Sintim HO (2009) Biological screening of a diverse set of AI-2 analogues in Vibrio harveyi suggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous. Chem Commun (Camb) 45:7033–5. doi:10.1039/b909666c CrossRefGoogle Scholar
  57. Sternberg C, Tolker-Nielsen T (2006) Growing and analyzing biofilms in flow cells. Curr Protoc Microbiol Chapter 1:Unit 1B 2 doi:10.1002/9780471729259.mc01b02s00
  58. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–8. doi:S0140673601053211 CrossRefGoogle Scholar
  59. Stewart PS, Murga R, Srinivasan R, Debeer D (1995) Biofilm structural heterogeneity visualized by 3 microscopic methods. Water Res 29(8):2006–2009. doi:10.1016/0043-1354(94)00339-9 CrossRefGoogle Scholar
  60. Sun J, Daniel R, Wagner-Dobler I, Zeng AP (2004) Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4:36. doi:10.1186/1471-2148-4-36 CrossRefGoogle Scholar
  61. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Ann Rev Biomed Eng 9:229–256. doi:10.1146/annure/bioeng.9.060906.151850 CrossRefGoogle Scholar
  62. Vertes A, Hitchins V, Phillips KS (2012) Analytical challenges of microbial biofilms on medical devices. Anal Chem 84(9):3858–3866. doi:10.1021/ac2029997 CrossRefGoogle Scholar
  63. Wen ZT, Burne RA (2004) LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186(9):2682–91. doi:10.1128/jb.186.9.2682.2691.2004 CrossRefGoogle Scholar
  64. Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth T, Feller KA (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens Bioelectron 22(7):1368–75. doi:10.1016/j.bios.2006.06.003 CrossRefGoogle Scholar
  65. Zhang TC, Bishop PL (1996) Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ Res 68(7):1107–1115. doi:10.2175/106143096x128504 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Varnika Roy
    • 1
    • 2
  • Mariana T. Meyer
    • 2
    • 3
  • Jacqueline A. I. Smith
    • 4
  • Sonja Gamby
    • 4
  • Herman O. Sintim
    • 4
  • Reza Ghodssi
    • 2
    • 3
    • 5
  • William E. Bentley
    • 2
  1. 1.Graduate Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkUSA
  2. 2.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  3. 3.Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  4. 4.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  5. 5.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations