Applied Microbiology and Biotechnology

, Volume 97, Issue 11, pp 4887–4896 | Cite as

Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds

  • Christian Detzel
  • Ruth Maas
  • Agne Tubeleviciute
  • Joachim Jose
Biotechnologically relevant enzymes and proteins


Using the Autodisplay system, a recombinant Escherichia coli strain displaying the dimeric nitrilase from Klebsiella pneumoniae subsp. ozaenae (NitKp) on the cell surface was constructed. Localization of the nitrilase in the cell envelope of E. coli was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis and surface exposure was verified by its accessibility to externally added protease. The whole-cell biocatalyst obtained converted the substrates analyzed in the following order: chloroxynil > bromoxynil > ioxynil > 3-bromo-4-hydroxybenzonitrile (1.67, 0.89, 0.13, and 0.09 mM product formation within 72 h, respectively), indicating the same substrate specificity for the displayed enzyme as for the free enzyme. The whole-cell biocatalyst was also able to convert 3-fluoro-4-hydroxybenzonitrile and 3,5-dimethyl-4-hydroxybenzonitrile to the corresponding carboxylic acids. In contrast, it was not possible to detect any enzyme activity when 4-methoxybenzonitrile was used as substrate. The temperature optimum determined was 45 °C for the surface-displayed enzyme instead of 35 °C for the purified enzyme. In addition, the optimum activity of the displayed nitrilase was shifted to more acidic pH in comparison to the free enzyme.


Autodisplay Nitrilase Bromoxynil Biocatalyst Surface display Biodeterioration 



The present study arose from a larger project within the scope of a patent value fund. In this context, we acknowledge the financial support provided by the Zyrus Beteiligungsgesellschaft mbH & Co. Patente I KG (Germany). In addition, the authors thank Hans J. Gross, Würzburg, and Mark Teese, Münster for the helpful discussions and Peter Proksch, Düsseldorf for providing the marine sponge extracts.


  1. Benz I, Schmidt MA (1989) Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun 57:1506–1511Google Scholar
  2. Cupples AM, Sanford RA, Sims GK (2005) Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans. Appl Environ Microbiol 71:3741–3746CrossRefGoogle Scholar
  3. Detzel C, Maas R, Jose J (2011) Autodisplay of nitrilase from Alcaligenes faecalis in E. coli yields a whole cell biocatalyst for the synthesis of enantiomerically pure (R)-mandelic acid. ChemCatChem 3:719–725CrossRefGoogle Scholar
  4. Gabriel J, Věková J, Vosáhlo J (1996) High-performance liquid chromatographic study of the aromatic nitrile metabolism in soil bacteria. J Chromatogr B Biomed Appl 681:191–195CrossRefGoogle Scholar
  5. Graß B, Mayer H, Nolte J, Preuß G, Zullei-Seibert N (2000) Studies on the metabolism of hydroxybenzonitrile herbicides: I. Mass spectrometric identification. Pest Manag Sci 56:49–59CrossRefGoogle Scholar
  6. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103CrossRefGoogle Scholar
  7. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744CrossRefGoogle Scholar
  8. Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154:155–168CrossRefGoogle Scholar
  9. Jose J (2006) Autodisplay: efficient bacterial surface display of recombinant proteins. Appl Microbiol Biotechnol 69:607–614CrossRefGoogle Scholar
  10. Jose J, Meyer TF (2007) The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71:600–619CrossRefGoogle Scholar
  11. Jose J, von Schwichow S (2004) Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. ChemBioChem 5:491–499CrossRefGoogle Scholar
  12. Jose J, Bernhardt R, Hannemann F (2002) Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J Biotechnol 95:257–268CrossRefGoogle Scholar
  13. Jose J, Park M, Pyun JC (2010) E. coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens Bioelectron 25:1225–1228CrossRefGoogle Scholar
  14. Jung HC, Lebeault JM, Pan JG (1998) Surface display of Zymomonas mobilis levansucrase by using the ice—nucleation protein of Pseudomonas syringae. Nat Biotechnol 16:576–580CrossRefGoogle Scholar
  15. Kilinç A, Teke M, Önal S, Telefoncu A (2006) Immobilization of pancreatic lipase on chitin and chitosan. Prep Biochem Biotechnol 36:153–163CrossRefGoogle Scholar
  16. Koulman A, Proksch P, Ebel R, Beekman AC, van Uden W, Konings AW, Pedersen JA, Pras N, Woerdenbag HJ (1996) Cytotoxicity and mode of action of aeroplysinin-1 and a related dienone from the sponge Aplysina aerophoba. J Nat Prod 59:591–594CrossRefGoogle Scholar
  17. Kranen E, Steffan N, Maas R, Li SM, Jose J (2011) Development of a whole cell biocatalyst for the efficient prenylation of indole derivatives by autodisplay of the aromatic prenyltransferase FgaPT2. ChemCatChem 3:1200–1207CrossRefGoogle Scholar
  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  19. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefGoogle Scholar
  20. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179:794–804Google Scholar
  21. Nahrstedt A, Kant JD, Hösel W (1984) Aspects on the biosynthesis of the cyanogenic glucoside triglochinin in Triglochin maritima1. Planta Med 50:394–397CrossRefGoogle Scholar
  22. Park M, Jose J, Thömmes S, Kim J, Park MJ, Pyun JC (2011) Autodisplay of streptavidin. Enzyme Microb Tech 48:307–311CrossRefGoogle Scholar
  23. Petermann K, Vordenbäumen S, Pyun JC, Braukmann A, Bleck E, Schneider M, Jose J (2010) Autodisplay of 60-kDa Ro/SS-A antigen and development of a surface display enzyme-linked immunosorbent assay for systemic lupus erythematosus patient sera screening. Anal Biochem 407:72–78CrossRefGoogle Scholar
  24. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Press, New YorkGoogle Scholar
  25. Stalker DM, Malyj LD, McBride KE (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314Google Scholar
  26. Thimann KV, Mahadevan S (1964) Nitrilase. I. Occurrence, preparation, and general properties of the enzyme. Arch Biochem Biophys 105:133–141CrossRefGoogle Scholar
  27. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727CrossRefGoogle Scholar
  28. Veselá AB, Franc M, Pelantová H, Kubáč D, Vejvoda V, Šulc M, Bhalla TC, Macková M, Lovecká P, Janů P, Demnerová K, Martínková L (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation 21:761–770CrossRefGoogle Scholar
  29. Yavuz H, Akgöl S, Arica Y, Denizli A (2004) Concanavalin A immobilized affinity adsorbents for reversible use in yeast invertase adsorption. Macromol Biosci 4:674–679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christian Detzel
    • 1
    • 2
  • Ruth Maas
    • 1
    • 2
  • Agne Tubeleviciute
    • 1
  • Joachim Jose
    • 1
  1. 1.Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Autodisplay Biotech GmbHDüsseldorfGermany

Personalised recommendations