Applied Microbiology and Biotechnology

, Volume 97, Issue 6, pp 2617–2625 | Cite as

Impact of dissolved hydrogen partial pressure on mixed culture fermentations

  • Stefan de Kok
  • Jasper Meijer
  • Mark C. M. van Loosdrecht
  • Robbert Kleerebezem
Applied microbial and cell physiology

Abstract

Mixed culture fermentations are of interest for the low-cost production of organic acids from complex agricultural waste streams. Models are developed for these processes in order to predict the product spectrum as a function of the environmental process conditions. An important assumption in many existing models for anaerobic mixed culture fermentations is that the NADH/NAD+ ratio is directly coupled to the dissolved hydrogen partial pressure (pH2, liquid). In this study, this assumption was tested experimentally with mixed culture chemostats operated at dilution rates of 0.05 and 0.125 h−1 for a wide range of calculated dissolved hydrogen partial pressures (0.04–6.8 atm). No correlation was found between pH2, liquid and the NADH/NAD+ ratio. This result, together with thermodynamic calculations, suggests that additional electron carriers such as ferredoxin and formate should be included in models predicting product formation by mixed cultures.

Keywords

Mixed culture fermentation Intracellular metabolites NADH/NAD+ ratio Thermodynamics Ferredoxin Formate 

References

  1. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78CrossRefGoogle Scholar
  2. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485CrossRefGoogle Scholar
  3. Collet C, Girbal L, Péringer P, Schwitzguébel JP, Soucaille P (2006) Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 185(5):331–339CrossRefGoogle Scholar
  4. Costello D, Greenfield P, Lee PL (1991) Dynamic modelling of a single-stage high-rate anaerobic reactor I. Model derivation. Water Res 25(7):847–858CrossRefGoogle Scholar
  5. Fynn G, Syafila M (1990) Hydrogen regulation of acetogenesis from glucose by freely suspended and immobilised acidogenic cells in continuous culture. Biotechnol Lett 12(8):621–626CrossRefGoogle Scholar
  6. Kim DH, Han SK, Kim SH, Shin HS (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 31(15):2158–2169CrossRefGoogle Scholar
  7. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212CrossRefGoogle Scholar
  8. Kleerebezem R, Rodriguez J, Temudo M, van Loosdrecht MCM (2008) Modeling mixed culture fermentations; the role of different electron carriers. Water Sci Technol 57(4):493–497CrossRefGoogle Scholar
  9. Kraemer JT, Bagley DM (2006) Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging. Biotechnol Lett 28(18):1485–1491CrossRefGoogle Scholar
  10. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29(5):685–695CrossRefGoogle Scholar
  11. Lange H, Eman M, Van Zuijlen G, Visser D, Van Dam J, Frank J, De Mattos M, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75(4):406–415CrossRefGoogle Scholar
  12. Li C, Fang H (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37(1):1–39CrossRefGoogle Scholar
  13. Lilius EM, Multanen VM, Toivonen V (1979) Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem 99(1):22–27CrossRefGoogle Scholar
  14. Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236CrossRefGoogle Scholar
  15. Ljungdahl L, Wood H (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol 23(1):515–538CrossRefGoogle Scholar
  16. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73(1):59–65CrossRefGoogle Scholar
  17. Mosey F (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15(8–9):209–232Google Scholar
  18. Mu Y, Yu HQ, Wang G (2007) Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb Technol 40(4):947–953CrossRefGoogle Scholar
  19. Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606CrossRefGoogle Scholar
  20. Roels J (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam, p 330Google Scholar
  21. Ruzicka M (1996) The effect of hydrogen on acidogenic glucose cleavage. Water Res 30(10):2447–2451CrossRefGoogle Scholar
  22. Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183(5):1748–1754CrossRefGoogle Scholar
  23. Schlegel HG (1993) General microbiology, 7th edn. Cambridge University Press, CambridgeGoogle Scholar
  24. Siriwongrungson V, Zeng RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41(18):4204–4210CrossRefGoogle Scholar
  25. Snoep JL, Joost M, de Mattos T, Neijssel OM (1991) Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol Lett 81(1):63–66CrossRefGoogle Scholar
  26. Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira J, de Mattos M, Neijssel OM (1993) Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol Lett 114(3):279–283CrossRefGoogle Scholar
  27. Snoep JL, de Graef MR, de Mattos M, Neijssel OM (1994) Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol Lett 116(3):263–268CrossRefGoogle Scholar
  28. Stouthamer A (1988) Bioenergetics and yields with electron acceptors other than oxygen. Handbook on anaerobic fermentations. Marcel Dekker, New York, pp 345–437Google Scholar
  29. Temudo MF, Kleerebezem R, van Loosdrecht MCM (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98(1):69–79CrossRefGoogle Scholar
  30. Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80(6):1121–1130CrossRefGoogle Scholar
  31. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55(2):305–316CrossRefGoogle Scholar
  32. Van Andel JG, Zoutberg GR, Crabbendam PM, Breure AM (1985) Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl Microbiol Biotechnol 23(1):21–26CrossRefGoogle Scholar
  33. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176(5):1443–1450Google Scholar
  34. Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Heijnen JJ (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88(2):157–167CrossRefGoogle Scholar
  35. Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage 74(1):65–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stefan de Kok
    • 1
  • Jasper Meijer
    • 1
  • Mark C. M. van Loosdrecht
    • 1
  • Robbert Kleerebezem
    • 1
  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations