Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 1, pp 417–428 | Cite as

Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage

  • Nurul H. Khan
  • Tae Sun Kang
  • Douglas A. S. Grahame
  • Monique C. Haakensen
  • Kornsulee Ratanapariyanuch
  • Martin J. Reaney
  • Darren R. Korber
  • Takuji TanakaEmail author
Bioenergy and biofuels

Abstract

Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11–12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.

Keywords

Glycerol Biofuel waste Value-added product Fermentation Glucose metabolism NADH recycling 

Notes

Acknowledgments

We acknowledge the Saskatchewan Agriculture Development Fund and Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada for supporting this research. We thank Pound-Maker Agventures Ltd. for thin stillage samples. We are obliged to Jori Harrison for her assistance in the laboratory experiments. Ms. Sylvia Yada is also acknowledged for her careful editorial advice.

References

  1. Abbad-Andaloussi S, Manginot-Dürr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterisation of Clostridium butyricum DSM 5431 mutants with increased resistance to 1, 3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417Google Scholar
  2. Barbirato F, Camarasa-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793CrossRefGoogle Scholar
  3. Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34:739–744CrossRefGoogle Scholar
  4. Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1, 3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457CrossRefGoogle Scholar
  5. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360CrossRefGoogle Scholar
  6. Cheng KK, Liu HJ, Liu DH (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett 27:19–22CrossRefGoogle Scholar
  7. Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM (2006) Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28:1817–1821CrossRefGoogle Scholar
  8. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotech Adv 27:30–39CrossRefGoogle Scholar
  9. Forage RG, Lin ECC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599Google Scholar
  10. Forge F (2007) Biofuel— an energy, environmental or agricultural policy? In: Service PIaR (ed). vol PRB 06-37BGoogle Scholar
  11. Forsberg WC (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643Google Scholar
  12. Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1, 3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446CrossRefGoogle Scholar
  13. Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I (2005a) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity. J Ind Microbiol Biotechnol 32:391–396CrossRefGoogle Scholar
  14. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005b) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336CrossRefGoogle Scholar
  15. Hirkala DLM, Germida JJ (2004) Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombination plasmid, pADPTel. Can J Microbiol 50:595–604CrossRefGoogle Scholar
  16. Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforschung Volkenrode 5:261–267Google Scholar
  17. Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126CrossRefGoogle Scholar
  18. Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98-100:687–698CrossRefGoogle Scholar
  19. Koch JP, Hayashi S, Lin ECC (1964) The control of the dissimilation of glycerol and L-α-glycerolphosphate in Escherichia coli. J Biol Chem 239:3106–3108Google Scholar
  20. Lin RH, Liu HJ, Hao J, Cheng K, Liu DH (2005) Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 27:1755–1759CrossRefGoogle Scholar
  21. Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Anenbaum SWT (1983) System development for linked-fermentation products of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023Google Scholar
  22. Pedersen C, Jonsson H, Lindberg JE, Roos S (2004) Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of Lactobacilli with potential as probiotics. Appl Environ Microbiol 70:1522–1527CrossRefGoogle Scholar
  23. Peng QL, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296CrossRefGoogle Scholar
  24. Ratanapariyanuch K, Tyler RT, Jia Y, Shen J, Shim YY, Reaney MJT (2011) Rapid NMR method for the quantification of organic compounds in thin stillage. J Agric Food Chem 59:10454–10460CrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  26. Stieb M, Bernhard S (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140:139–146CrossRefGoogle Scholar
  27. Sun J, Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272CrossRefGoogle Scholar
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  29. Wiese BG, Strohmar W, Rainey FA, Diekmann H (1996) Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int J Syst Evol Microbiol 46:449–453Google Scholar
  30. Witt U, Müller RJ, Augusta J, Widdecke H, Deckwer WD (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys 195:793–802CrossRefGoogle Scholar
  31. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219CrossRefGoogle Scholar
  32. Ye J-J, Neal JW, Cui X, Reizer J, Saier MHJ (1994) Regulation of the glucose:H1 symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J Bacteriol 176:3484–3492Google Scholar
  33. Zeng AP, Bieb H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259Google Scholar
  34. Zhang YP, Li Y, Du CY, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586CrossRefGoogle Scholar
  35. Zhao YN, Chen G, Yao SJ (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32:93–99CrossRefGoogle Scholar
  36. Zheng P, Wereath K, Sun JB, van den Heuvel J, Zeng AP (2006) Over expression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem 41:2160–2169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nurul H. Khan
    • 1
  • Tae Sun Kang
    • 1
  • Douglas A. S. Grahame
    • 1
  • Monique C. Haakensen
    • 1
    • 3
  • Kornsulee Ratanapariyanuch
    • 1
  • Martin J. Reaney
    • 2
  • Darren R. Korber
    • 1
  • Takuji Tanaka
    • 1
    Email author
  1. 1.Department of Food and Bioproduct Sciences, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Plant Sciences, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonCanada
  3. 3.Contango Strategies LtdSaskatoonCanada

Personalised recommendations