Applied Microbiology and Biotechnology

, Volume 96, Issue 3, pp 577–586 | Cite as

Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?

  • F. Gabriel Acién Fernández
  • C. V. González-López
  • J. M. Fernández Sevilla
  • E. Molina Grima


Microalgae have been proposed as a CO2 removal option to contribute to climate change avoidance and problems coming from the use of fossil fuels. However, even though microalgae can be used to fix CO2 from air or flue gases, they do not permit long-term CO2 storage because they are easily decomposed. On the other hand, microalgae can contribute to an enhancement in human sustainability by producing biofuels as an alternative to fossil fuels in addition to the production of other useful chemicals and commodities. Moreover, microalgae can contribute to enhancing the sustainability of waste treatment processes, reducing the energy consumed, and improving the recycling of nutrients contained within them. This paper reviews the potential contribution of these processes and the existing knowledge in these areas.


CO2 fixation Microalgae Biofuels Wastewater Biogas 



Many thanks to CENIT-CO2, MENOSCO2, ALGAPLANE, and PLANE; projects financed by ENDESA S.A., Ministerio de Industria (CDTI), Ministerio de Economía y Competitividad, the EnerBioAlgae Project (SOE2/P2/E374) SUDOE INTERREG IVB, and Junta de Andalucía (Plan Andaluz de Investigación, BIO 173).


  1. Acién FG, García F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scale-up. Prog Ind Microbiol 35:231–247CrossRefGoogle Scholar
  2. Acién FG, Fernández-Sevilla JM, Sánchez-Pérez JA, Molina E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732CrossRefGoogle Scholar
  3. Acién FG, JM, Magán JJ, Molina E (2012) Production costs of a real microalgae production plant and strategies to reduce it. Biotechnol Adv
  4. Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976CrossRefGoogle Scholar
  5. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:S475–S479CrossRefGoogle Scholar
  6. Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with microalgae—technology roadmap. Report No. 7010000926 prepared for the U.S. Department of Energy National energy technology laboratoryGoogle Scholar
  7. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final Report. US DOE-NETL No: DOE/PC/93204-T5. Prepared for the Energy Technology Center, Pittsburgh, USAGoogle Scholar
  8. Borowitzka MA, Borowitzka LJ (1988) Microalgal biotechnology. Cambridge University Press, Cambridge, 390Google Scholar
  9. Bosma R, Van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153CrossRefGoogle Scholar
  10. Camacho F, Acién FG, Sánchez JA, García F, Molina E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86CrossRefGoogle Scholar
  11. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  12. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  13. Chiu S, Kao C, Huang T, Lin C, Ong S, Chen C, Chang J, Lin C (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142CrossRefGoogle Scholar
  14. Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665CrossRefGoogle Scholar
  15. Cullinane JT, Rochelle GT (2004) The thermodynamics of aqueous potassium carbonate/piperazine for CO2 capture. ACS Div Fuel Chem Prepr 49(1)Google Scholar
  16. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  17. Fernández-Sevilla JM, Acién FG, Molina E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40CrossRefGoogle Scholar
  18. Godos I, Vargas VA, Blanco S, González MCG, Soto R, García-Encina PA, Becares E, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101:5150–5158CrossRefGoogle Scholar
  19. González-López CV, Acién FG, Fernández-Sevilla JM, Sánchez-Fernández JF, Cerón MC, Molina E (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910CrossRefGoogle Scholar
  20. González-López CV, Acién FG, Fernández-Sevilla JM, Sánchez-Fernández JF, Molina E (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650CrossRefGoogle Scholar
  21. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  22. Herzog H, Eliasson B, Kaarstad O (2000) Capturing greenhouse gases. Sci Am 282:72–79CrossRefGoogle Scholar
  23. Herzog H, Caldeira K, Reilly J (2003) An issue of permanence: assessing the effectiveness of temporary carbon storage. Clim Change 59:293–310CrossRefGoogle Scholar
  24. Ho S, Chen W, Chang J (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730CrossRefGoogle Scholar
  25. Hsueh HT, Chu H, Chang CC (2007) Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ Sci Technol 41:1909–1914CrossRefGoogle Scholar
  26. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  27. Hughes E, Benemann JR (1997) Biological fossil CO2 mitigation. Energy Convers Manage 38:S467–S473CrossRefGoogle Scholar
  28. International Energy Outlook (2008) What will it take to stabilize carbon dioxide concentrations? DOE/EIA-0484(2008). (02.16.09)
  29. Jiang Z, Zhongbao L, Yinghua L, Xuemin T, Bin L, Yuanyue L, Zhiqiang L, Yaojiang L, Jixin Z (2011) Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater. Afr J Biotechnol 10:13115–13120CrossRefGoogle Scholar
  30. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193CrossRefGoogle Scholar
  31. Kao C, Chiu S, Huang T, Dai L, Hsu L, Lin C (2012a) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energy 93:176CrossRefGoogle Scholar
  32. Kao C, Chiu S, Huang T, Dai L, Wang G, Tseng C, Chen C, Lin C (2012b) A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy 36:132–140CrossRefGoogle Scholar
  33. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291CrossRefGoogle Scholar
  34. Molina E, Acién FG, García F, Camacho F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368CrossRefGoogle Scholar
  35. Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84:29–41CrossRefGoogle Scholar
  36. Möllersten K, Yan J, Moreira JR (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285CrossRefGoogle Scholar
  37. Moreno J, Vargas MA, Rodríguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–197CrossRefGoogle Scholar
  38. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  39. Muñoz R, Jacinto M, Guieysse B, Mattiasson B (2005) Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl Microbiol Biotechnol 67:699–707CrossRefGoogle Scholar
  40. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefGoogle Scholar
  41. Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91CrossRefGoogle Scholar
  42. Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257CrossRefGoogle Scholar
  43. Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262CrossRefGoogle Scholar
  44. Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639CrossRefGoogle Scholar
  45. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefGoogle Scholar
  46. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  47. Romero JM, Acién FG, Fernández-Sevilla JM (2012) Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170CrossRefGoogle Scholar
  48. Sánchez-Fernández JF, González-López CV, Acién FG, Fernández-Sevilla JM, Molina E (2011) Utilization of Anabaena sp. in CO2 removal processes: modelling of biomass, exopolysaccharides productivities and CO2 fixation rate. Appl Microbiol Biotechnol 94:613–624CrossRefGoogle Scholar
  49. Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manage 44:3073–3091CrossRefGoogle Scholar
  50. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Splcer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406CrossRefGoogle Scholar
  51. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128CrossRefGoogle Scholar
  52. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:12701–12715CrossRefGoogle Scholar
  53. Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329CrossRefGoogle Scholar
  54. Van Den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31CrossRefGoogle Scholar
  55. Vargas MA, Rodríguez H, Moreno J, Olivares H, Del Campo JA, Rivas J, Guerrero MG (1998) Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J Phycol 34:812–817CrossRefGoogle Scholar
  56. Veawab A, Aroonwilas A (2002) Identification of oxidizing agents in aqueous amine-CO2 systems using a mechanistic corrosion model. Corros Sci 44:967–987CrossRefGoogle Scholar
  57. Verstraete W, Van de Caveye P, Diamantis V (2009) Maximum use of resources present in domestic “used water”. Bioresour Technol 100:5537–5545CrossRefGoogle Scholar
  58. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefGoogle Scholar
  59. Wilson M, Tontiwachwuthikul P, Chakma A, Idem R, Veawab A, Aroonwilas A, Gelowitz D, Barrie J, Mariz C (2004) Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station. Energy 29:1259–1267CrossRefGoogle Scholar
  60. Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23:21–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • F. Gabriel Acién Fernández
    • 1
  • C. V. González-López
    • 1
  • J. M. Fernández Sevilla
    • 1
  • E. Molina Grima
    • 1
  1. 1.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain

Personalised recommendations